Patents by Inventor Shi Ning Ju

Shi Ning Ju has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11735649
    Abstract: A method for forming a fin field effect transistor device structure includes forming a first fin structure in an input/output region of the substrate with a fin top layer and a hard mask layer over the first fin structure. The method also includes forming a dummy oxide layer across the first fin structure. The method also includes forming a dummy gate structure over the dummy oxide layer across the first fin structure. The method also includes forming spacers on opposite sides of the dummy gate structure. The method also includes removing the dummy gate structure over the first fin structure. The method also includes removing the dummy oxide layer and trimming the first fin structure. The method also includes forming a first oxide layer across the first fin structure. The method also includes forming a first gate structure over the first oxide layer across the first fin structure.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: August 22, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Cheng Ching, Kuan-Ting Pan, Shi-Ning Ju, Chih-Hao Wang
  • Patent number: 11735591
    Abstract: A method includes providing a structure having two fins extending from a substrate; an isolation structure isolating bottom portions of the fins; source/drain (S/D) features over each of the fins; a dielectric fin oriented lengthwise parallel to the fins and disposed between the two fins and over the isolation structure; a dummy gate stack over the isolation structure, the fins, and the dielectric fin; and one or more dielectric layers over sidewalls of the dummy gate stack. The method further includes removing the dummy gate stack to result in a gate trench within the one or more dielectric layers, wherein the dielectric fin is exposed in the gate trench; trimming the dielectric fin to reduce a width of the dielectric fin; and after the trimming, forming a high-k metal gate in the gate trench.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: August 22, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuan-Ting Pan, Chih-Hao Wang, Shi Ning Ju, Jia-Chuan You, Kuo-Cheng Chiang
  • Publication number: 20230261110
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a source/drain feature on a semiconductor fin structure, a first isolation structure surrounding the semiconductor fin structure, source/drain spacers on the first isolation structure and surrounding a lower portion of the source/drain feature, a dielectric fin structure adjoining and in direct contact with the first isolation structure and one of the source/drain spacers, and an interlayer dielectric layer over the source/drain spacers and the dielectric fin structure and surrounding an upper portion of the source/drain feature.
    Type: Application
    Filed: April 21, 2023
    Publication date: August 17, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng CHIANG, Shi-Ning JU, Ching-Wei TSAI, Kuan-Lun CHENG, Chih-Hao WANG
  • Publication number: 20230260998
    Abstract: Self-aligned gate cutting techniques are disclosed herein that provide dielectric gate isolation fins for isolating gates of multigate devices from one another. An exemplary device includes a first multigate device having first source/drain features and a first metal gate that surrounds a first channel layer and a second multigate device having second source/drain features and a second metal gate that surrounds a second channel layer. A dielectric gate isolation fin separates the first metal gate from the second metal gate. The dielectric gate isolation fin includes a first dielectric layer having a first dielectric constant and a second dielectric layer having a second dielectric constant disposed over the first dielectric layer. The second dielectric constant is greater than the first dielectric constant. The first metal gate and the second metal gate physically contact the first channel layer and the second channel layer, respectively, and the dielectric gate isolation fin.
    Type: Application
    Filed: March 27, 2023
    Publication date: August 17, 2023
    Inventors: Shi Ning JU, Zhi-Chang LIN, Shih-Cheng CHEN, Chih-Hao WANG, Kuo-Cheng CHIANG, Kuan-Ting PAN
  • Publication number: 20230260849
    Abstract: Self-aligned gate cutting techniques for multigate devices are disclosed herein that provide multigate devices having asymmetric metal gate profiles and asymmetric source/drain feature profiles. An exemplary multigate device has a channel layer, a metal gate that wraps a portion of the channel layer, and source/drain features disposed over a substrate. The channel layer extends along a first direction between the source/drain features. A first dielectric fin and a second dielectric fin are disposed over the substrate and configured differently. The channel layer extends along a second direction between the first dielectric fin and the second dielectric fin. The metal gate is disposed between the channel layer and the second dielectric fin. In some embodiments, the first dielectric fin is disposed on a first isolation feature, and the second dielectric fin is disposed on a second isolation feature. The first isolation feature and the second isolation feature are configured differently.
    Type: Application
    Filed: April 24, 2023
    Publication date: August 17, 2023
    Inventors: Guan-Lin Chen, Chih-Hao Wang, Ching-Wei Tsai, Shi Ning Ju, Jui-Chien Huang, Kuo-Cheng Chiang, Kuan-Lun Cheng
  • Publication number: 20230246028
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes first nanostructures and second nanostructures stacked in a vertical direction over a substrate, and a first dummy fin structure between the first nanostructures and the second nanostructures. The semiconductor device structure includes a first gate structure formed over the first nanostructures, wherein the first gate structure includes a gate dielectric layer, and the gate dielectric layer is in direct contact with a sidewall surface of the first dummy fin structure.
    Type: Application
    Filed: April 7, 2023
    Publication date: August 3, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Cheng CHIANG, Shi-Ning JU, Chih-Hao WANG, Kuan-Ting PAN, Zhi-Chang LIN
  • Patent number: 11710737
    Abstract: Semiconductor devices and method of forming the same are provided. In one embodiment, a semiconductor device includes a first transistor and a second transistor. The first transistor includes two first source/drain features and a first number of nanostructures that are stacked vertically one over another and extend lengthwise between the two first source/drain features. The second transistor includes two second source/drain features and a second number of nanostructures that are stacked vertically one over another and extend lengthwise between the two second source/drain features.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: July 25, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jung-Chien Cheng, Kuo-Cheng Chiang, Shi Ning Ju, Guan-Lin Chen, Chih-Hao Wang, Kuan-Lun Cheng
  • Publication number: 20230223442
    Abstract: A device includes a first vertical stack of nanostructures over a substrate, a second vertical stack of nanostructures over the substrate, a wall structure between and in direct contact with the first and second vertical stacks, a gate structure wrapping around three sides of the nanostructures and a source/drain region beside the first vertical stack of nanostructures.
    Type: Application
    Filed: May 23, 2022
    Publication date: July 13, 2023
    Inventors: Kuo-Cheng CHIANG, Shi Ning JU, Guan-Lin CHEN, Chia-Hao CHANG, Chih-Hao WANG
  • Patent number: 11699729
    Abstract: Semiconductor devices and their manufacturing methods are disclosed herein, and more particularly to semiconductor devices including a transistor having gate all around (GAA) transistor structures and manufacturing methods thereof. The methods described herein allow for complex shapes (e.g., “L-shaped”) to be etched into a multi-layered stack to form fins used in the formation of active regions of the GAA nanostructure transistor structures. In some embodiments, the active regions may be formed with a first channel width and a first source/drain region having a first width and a second channel width and a second source/drain region having a second width that is less than the first width.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: July 11, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shi Ning Ju, Guan-Lin Chen, Kuo-Cheng Chiang, Chih-Hao Wang
  • Publication number: 20230197822
    Abstract: A semiconductor structure includes a first stack of semiconductor layers disposed over a semiconductor substrate, where the first stack of semiconductor layers includes a first SiGe layer and a plurality of Si layers disposed over the first SiGe layer and the Si layers are substantially free of Ge, and a second stack of semiconductor layers disposed adjacent to the first stack of semiconductor layers, where the second stack of semiconductor layers includes the first SiGe layer and a plurality of second SiGe layers disposed over the first SiGe layer, and where the first SiGe layer and the second SiGe layers have different compositions. The semiconductor structure further includes a first metal gate stack interleaved with the first stack of semiconductor layers to form a first device and a second metal gate stack interleaved with the second stack of semiconductor layers to form a second device different from the first device.
    Type: Application
    Filed: February 13, 2023
    Publication date: June 22, 2023
    Inventors: Guan-Lin Chen, Kuo-Cheng Chiang, Shi Ning Ju, Chih-Hao Wang, Kuan-Lun Cheng
  • Patent number: 11682697
    Abstract: A method includes forming isolation regions extending from a top surface of a semiconductor substrate into the semiconductor substrate, and forming a hard mask strip over the isolation regions and a semiconductor strip, wherein the semiconductor strip is between two neighboring ones of the isolation regions. A dummy gate strip is formed over the hard mask strip, wherein a lengthwise direction of the dummy gate strip is perpendicular to a lengthwise direction of the semiconductor strip, and wherein a portion of the dummy gate strip is aligned to a portion of the semiconductor strip. The method further includes removing the dummy gate strip, removing the hard mask strip, and recessing first portions of the isolation regions that are overlapped by the removed hard mask strip. A portion of the semiconductor strip between and contacting the removed first portions of the isolation regions forms a semiconductor fin.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: June 20, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Cheng Chiang, Shi Ning Ju, Guan-Lin Chen
  • Patent number: 11676864
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a first fin, a second fin adjacent the first fin, and a third fin adjacent the second fin. The structure further includes a first source/drain epitaxial feature merged with a second source/drain epitaxial feature. The structure further includes a third source/drain epitaxial feature, and a first liner positioned at a first distance away from a first plane defined by a first sidewall of the first fin and a second distance away from a second plane defined by a second sidewall of the second fin. The first distance is substantially the same as the second distance, and the merged first and second source/drain epitaxial features is disposed over the first liner. The structure further includes a dielectric feature disposed between the second source/drain epitaxial feature and the third source/drain epitaxial feature.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: June 13, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuan-Ting Pan, Kuo-Cheng Chiang, Shi-Ning Ju, Shang-Wen Chang, Chih-Hao Wang
  • Publication number: 20230178555
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a semiconductor fin including a first surface, a second surface opposite the first surface, a third surface connecting the first surface and the second surface, and a fourth surface opposite the third surface. The semiconductor device structure further includes a gate electrode layer disposed adjacent the first, third, and fourth surfaces of the semiconductor fin, a first source/drain epitaxial feature in contact with the semiconductor fin, and a first inner spacer disposed between the first source/drain epitaxial feature and the gate electrode layer. The first inner spacer is in contact with the first source/drain epitaxial feature, and the first inner spacer comprises a first material. The semiconductor device structure further includes a first spacer in contact with the first inner spacer, and the first spacer comprises a second material different from the first material.
    Type: Application
    Filed: January 30, 2023
    Publication date: June 8, 2023
    Inventors: Kuan-Ting PAN, Kuo-Cheng CHIANG, Shi-Ning JU, Yi-Ruei JHAN, Kuan-Lun CHENG, Chih-Hao WANG
  • Patent number: 11670550
    Abstract: A method of forming a semiconductor device includes: forming a fin structure protruding above a substrate, where the fin structure comprises a fin and a layer stack overlying the fin, where the layer stack comprises alternating layers of a first semiconductor material and a second semiconductor material; forming a dummy gate structure over the fin structure; forming openings in the fin structure on opposing sides of the dummy gate structure, where the openings extend through the layer stack into the fin; forming a dielectric layer in bottom portions of the openings; and forming source/drain regions in the openings on the dielectric layer, where the source/drain regions are separated from the fin by the dielectric layer.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: June 6, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Guan-Lin Chen, Kuo-Cheng Chiang, Shi Ning Ju, Jung-Chien Cheng, Chih-Hao Wang, Kuan-Lun Cheng
  • Patent number: 11664378
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a semiconductor fin having a first portion having a first width and a second portion having a second width substantially less than the first width. The first portion has a first surface, the second portion has a second surface, and the first and second surfaces are connected by a third surface. The third surface forms an angle with respect to the second surface, and the angle ranges from about 90 degrees to about 130 degrees. The structure further includes a gate electrode layer disposed over the semiconductor fin and source/drain epitaxial features disposed on the semiconductor fin on opposite sides of the gate electrode layer.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: May 30, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wen-Ting Lan, Shi Ning Ju, Kuo-Cheng Chiang, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11664454
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a semiconductor fin structure over a substrate, forming a dielectric fin structure laterally spaced apart from the semiconductor fin structure, forming a source/drain spacer between the semiconductor fin structure and the dielectric fin structure, etching an upper portion of the semiconductor fin structure to expose a lower portion of the semiconductor fin structure, and forming a source/drain feature over the lower portion of the semiconductor fin structure. The source/drain spacer is interposed between the source/drain feature and the dielectric fin structure.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: May 30, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Chiang, Shi-Ning Ju, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang
  • Publication number: 20230155003
    Abstract: A semiconductor device structure includes a fin structure over a semiconductor substrate and a dummy gate stack formed over the fin structure and having a first sidewall and an opposite second sidewall. The semiconductor device structure also includes a first and second source or drain (S/D) structures in the fin structure and respectively adjacent to the first and second sidewalls of the dummy gate stack. The semiconductor device structure further includes an isolation feature formed in the fin structure below the dummy gate stack and having a third sidewall and an opposite fourth sidewall. A first end of the third sidewall overlaps the first end of the fourth sidewall. A second end of the third sidewall is in direct contact with a bottom of the dummy gate stack. A second end of the fourth sidewall is separated from the bottom of the dummy gate stack.
    Type: Application
    Filed: January 20, 2023
    Publication date: May 18, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Cheng CHING, Shi-Ning JU, Kuan-Ting PAN, Kuan-Lun CHENG, Chih-Hao WANG
  • Patent number: 11652160
    Abstract: FinFET patterning methods are disclosed for achieving fin width uniformity. An exemplary method includes forming a mandrel layer over a substrate. A first cut removes a portion of the mandrel layer, leaving a mandrel feature disposed directly adjacent to a dummy mandrel feature. The substrate is etched using the mandrel feature and the dummy mandrel feature as an etch mask, forming a dummy fin feature and an active fin feature separated by a first spacing along a first direction. A second cut removes a portion of the dummy fin feature and a portion of the active fin feature, forming dummy fins separated by a second spacing and active fins separated by the second spacing. The second spacing is along a second direction substantially perpendicular to the first direction. A third cut removes the dummy fins, forming fin openings, which are filled with a dielectric material to form dielectric fins.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: May 16, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Cheng Ching, Shi Ning Ju, Kuan-Lun Cheng, Chih-Hao Wang
  • Publication number: 20230142902
    Abstract: A method of manufacturing a semiconductor device structure includes bonding a device substrate to a first de-bond layer. The first de-bond layer is disposed on a first carrier substrate, and the device substrate has a first side facing the first carrier substrate and a second side opposite from the first side. The device substrate has a first width. A front-end-of-line (FEOL) process and a back-end-of-line (BEOL) process are performed on the device substrate. A second carrier substrate having a second de-bond layer is bonded on the second side of the device substrate. The first carrier substrate is removed by removing the first de-bond layer. A width of the device substrate remains the first width after removing the first carrier substrate.
    Type: Application
    Filed: May 20, 2022
    Publication date: May 11, 2023
    Inventors: Shi Ning JU, Wen-Ting LAN, I-Han HUANG, Kuo-Cheng CHIANG, Chih-Hao WANG
  • Publication number: 20230141523
    Abstract: Semiconductor structures and methods for manufacturing the same are provided. The semiconductor structure includes a substrate and first channel structures and second channel structures formed over the substrate. The semiconductor structure also includes a dielectric fin structure formed between the first channel structures and the second channel structures. In addition, the dielectric fin structure includes a core portion and first connecting portions connected to the core portion. The semiconductor structure also includes a gate structure including a first portion. In addition, the first portion of the gate structure is formed around the first channel structures and covers the first connecting portions of the dielectric fin structure.
    Type: Application
    Filed: February 23, 2022
    Publication date: May 11, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Guan-Lin CHEN, Jung-Chien CHENG, Kuo-Cheng CHIANG, Shi-Ning JU, Chih-Hao WANG