Patents by Inventor Shigeru Tahara

Shigeru Tahara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10319905
    Abstract: A method for performing post-etch annealing of a workpiece in an annealing system is described. In particular, the method includes disposing one or more workpieces in an annealing system, each of the one or more workpieces having a multilayer stack of thin films that has been patterned using an etching process sequence to form an electronic device characterized by a cell critical dimension (CD), wherein the multilayer stack of thin films includes at least one patterned layer containing magnetic material. Thereafter, the patterned layer containing magnetic material on the one or more workpieces is annealed in the annealing system via an anneal process condition, wherein the anneal process condition is selected to adjust a property of the patterned layer containing magnetic material.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: June 11, 2019
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: David F. Hurley, Doni Parnell, Shigeru Tahara, Toru Ishii
  • Publication number: 20190115192
    Abstract: A plasma etching apparatus includes a second electrode configured to support a target substrate thereon, a second RF power supply unit configured to apply a second RF power for providing a bias for ion attraction to the second electrode, and a control system including and an RF controller. The RF controller is configured to switch the second RF power supply unit between a continuous mode that executes continuous supply of the second RF power at a constant power level and a power modulation mode that executes modulation of the second RF power between a first power and a second power larger than the first power. The RF controller is preset to control the second RF power supply unit such that the second RF power supply unit is first operated in the continuous mode for plasma ignition and then is switched into the power modulation mode.
    Type: Application
    Filed: December 21, 2018
    Publication date: April 18, 2019
    Applicant: Tokyo Electron Limited
    Inventors: Akira Koshiishi, Noriyuki Kobayashi, Shigeru Yoneda, Kenichi Hanawa, Shigeru Tahara, Masaru Sugimoto
  • Patent number: 10236162
    Abstract: A method of etching a porous film is provided. The method includes supplying a first gas into a processing chamber of a plasma processing apparatus in which an object to be processed including a porous film is accommodated, and generating a plasma of a second gas for etching the porous film in the processing chamber. The first gas is a processing gas having a saturated vapor pressure of less than or equal to 133.3 Pa at a temperature of a stage on which the object is mounted in the processing chamber, or includes the processing gas. In the step of supplying the first gas, no plasma is generated, and a partial pressure of the processing gas which is supplied into the processing chamber is set to be greater than or equal to 20% of the saturated vapor pressure.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: March 19, 2019
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Shigeru Tahara, Eiichi Nishimura, Mikhail Baklanov, Liping Zhang, Jean-Francois de Marneffe
  • Patent number: 10229815
    Abstract: A plasma etching apparatus includes a first RF power supply unit configured to apply a first RF power for plasma generation to a first electrode or a second electrode disposed opposite to each other in a process container configured to be vacuum-exhausted, a second RF power supply unit configured to apply a second RF power for ion attraction to the second electrode, and a controller configured to control the second RF power supply unit. The second RF power supply unit includes a second RF power supply and a second matching unit. The controller is preset to control the second RF power supply unit to operate in a power modulation mode that executes power modulation in predetermined cycles between a first power and a second power, while controlling the second matching unit to switch a matching operation in synchronism with the power modulation.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: March 12, 2019
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Akira Koshiishi, Noriyuki Kobayashi, Shigeru Yoneda, Kenichi Hanawa, Shigeru Tahara, Masaru Sugimoto
  • Patent number: 10074800
    Abstract: A method of an embodiment includes: mounting a workpiece, which includes the magnetic layer, on an electrostatic chuck provided in a processing container of a plasma processing apparatus; and etching the magnetic layer to generate plasma of a processing gas including isopropyl alcohol and carbon dioxide in the processing container. In an embodiment, a pressure of a space in the processing container is set to be 1.333 Pa or less, a temperature of the electrostatic chuck is set to be ?15° C. or lower, and a partial pressure of isopropyl alcohol is set to be equal to or lower than a saturation vapor pressure of the isopropyl alcohol.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: September 11, 2018
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Shigeru Tahara, Eiichi Nishimura
  • Publication number: 20180082823
    Abstract: A method of etching a porous film is provided. The method includes supplying a first gas into a processing chamber of a plasma processing apparatus in which an object to be processed including a porous film is accommodated, and generating a plasma of a second gas for etching the porous film in the processing chamber. The first gas is a processing gas having a saturated vapor pressure of less than or equal to 133.3 Pa at a temperature of a stage on which the object is mounted in the processing chamber, or includes the processing gas. In the step of supplying the first gas, no plasma is generated, and a partial pressure of the processing gas which is supplied into the processing chamber is set to be greater than or equal to 20% of the saturated vapor pressure.
    Type: Application
    Filed: November 29, 2017
    Publication date: March 22, 2018
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Shigeru TAHARA, Eiichi NISHIMURA, Mikhaïl BAKLANOV, Liping ZHANG, Jean-Francois de Marneffe
  • Publication number: 20180033958
    Abstract: A method of an embodiment includes: mounting a workpiece, which includes the magnetic layer, on an electrostatic chuck provided in a processing container of a plasma processing apparatus; and etching the magnetic layer to generate plasma of a processing gas including isopropyl alcohol and carbon dioxide in the processing container. In an embodiment, a pressure of a space in the processing container is set to be 1.333 Pa or less, a temperature of the electrostatic chuck is set to be ?15° C. or lower, and a partial pressure of isopropyl alcohol is set to be equal to or lower than a saturation vapor pressure of the isopropyl alcohol.
    Type: Application
    Filed: March 1, 2016
    Publication date: February 1, 2018
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Shigeru TAHARA, Eiichi NISHIMURA
  • Patent number: 9859102
    Abstract: A method of etching a porous film is provided. The method includes supplying a first gas into a processing chamber of a plasma processing apparatus in which an object to be processed including a porous film is accommodated, and generating a plasma of a second gas for etching the porous film in the processing chamber. The first gas is a processing gas having a saturated vapor pressure of less than or equal to 133.3 Pa at a temperature of a stage on which the object is mounted in the processing chamber, or includes the processing gas. In the step of supplying the first gas, no plasma is generated, and a partial pressure of the processing gas which is supplied into the processing chamber is set to be greater than or equal to 20% of the saturated vapor pressure.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: January 2, 2018
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Shigeru Tahara, Eiichi Nishimura, Mikhail Baklanov, Liping Zhang, Jean-Francois de Marneffe
  • Patent number: 9786473
    Abstract: Provided is a method of processing a wafer, which is performed in a processing container of a plasma processing apparatus. This method is a plasma etching method performed on a porous film formed of SiOCH, and is a method of enabling the suppression of various types of deterioration such as an increase in the dielectric constant of the porous film. The wafer includes the porous film and a mask provided on the porous film. The method includes a process of generating a plasma of a first gas and a plasma of a second gas in the processing container and etching the porous film using the mask. The porous film contains SiOCH, and the first gas contains a fluorocarbon-based gas. The second gas contains GeF4 gas.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: October 10, 2017
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Shigeru Tahara
  • Publication number: 20170133206
    Abstract: Provided is a method of processing a wafer, which is performed in a processing container of a plasma processing apparatus. This method is a plasma etching method performed on a porous film formed of SiOCH, and is a method of enabling the suppression of various types of deterioration such as an increase in the dielectric constant of the porous film. The wafer includes the porous film and a mask provided on the porous film. The method includes a process of generating a plasma of a first gas and a plasma of a second gas in the processing container and etching the porous film using the mask. The porous film contains SiOCH, and the first gas contains a fluorocarbon-based gas. The second gas contains GeF4 gas.
    Type: Application
    Filed: October 31, 2016
    Publication date: May 11, 2017
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Shigeru TAHARA
  • Publication number: 20170069472
    Abstract: The disclosure relates to a method of cleaning a process chamber of a capacitively coupled plasma reactor, the method comprising: a) Introducing a gas comprising 80-100% in volume of inert gas into the process chamber, wherein said inert gas is selected from the group consisting of neon, argon, krypton, xenon and combinations thereof; and b) Forming a plasma from said inert gas, thereby cleaning said process chamber.
    Type: Application
    Filed: March 17, 2015
    Publication date: March 9, 2017
    Applicants: IMEC VZW, TOKYO ELECTRON LIMITED
    Inventors: Shigeru TAHARA, Dunja RADISIC
  • Publication number: 20160307732
    Abstract: A method of etching a porous film is provided. The method includes supplying a first gas into a processing chamber of a plasma processing apparatus in which an object to be processed including a porous film is accommodated, and generating a plasma of a second gas for etching the porous film in the processing chamber. The first gas is a processing gas having a saturated vapor pressure of less than or equal to 133.3 Pa at a temperature of a stage on which the object is mounted in the processing chamber, or includes the processing gas. In the step of supplying the first gas, no plasma is generated, and a partial pressure of the processing gas which is supplied into the processing chamber is set to be greater than or equal to 20% of the saturated vapor pressure.
    Type: Application
    Filed: April 18, 2016
    Publication date: October 20, 2016
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Shigeru TAHARA, Eiichi NISHIMURA, Mikhaïl BAKLANOV, Liping ZHANG, Jean-Francois de Marneffe
  • Publication number: 20160307734
    Abstract: There is provided a method of processing a target object to be processed including a porous film and a mask. The method include supplying a first gas into a processing chamber of a plasma processing apparatus in which the target object including the porous film is accommodated, and generating a plasma of a second gas in the processing chamber to remove the mask. The first gas is a processing gas having a saturated vapor pressure of less than or equal to 133.3 Pa at a temperature of a stage on which the target object is mounted in the processing chamber, or includes the processing gas. In the step of supplying the first gas, no plasma is generated, and a partial pressure of the processing gas supplied into the processing chamber is greater than or equal to 20% of the saturated vapor pressure.
    Type: Application
    Filed: April 18, 2016
    Publication date: October 20, 2016
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Shigeru TAHARA, Eiichi NISHIMURA
  • Patent number: 9263288
    Abstract: A method for lithography is disclosed. The method includes obtaining a self-organizing block-copolymer layer on a neutral layer overlying a substrate, the self-organizing block-copolymer layer comprising at least two polymer components having mutually different etching resistances, the self-organizing block-copolymer layer furthermore comprising a copolymer pattern structure formed by micro-phase separation of the at least two polymer components. Further, the method includes etching selectively a first polymer component of the self-organizing block-copolymer layer, thereby remaining a second polymer component. Still further, the method includes applying a plasma etching to the neutral layer using the second polymer component as a mask, wherein the plasma etching comprises an inert gas and H2.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: February 16, 2016
    Assignees: IMEC, Tokyo Electron Limited
    Inventors: Boon Teik Chan, Shigeru Tahara
  • Patent number: 9177816
    Abstract: One embodiment of the deposit removal method includes: preparing a substrate having a pattern on which a deposit is deposited, the pattern being formed by etching; exposing the substrate to a first atmosphere containing hydrogen fluoride gas; exposing the substrate to oxygen plasma while heating after the step of exposing the substrate to the first atmosphere; and exposing the substrate to a second atmosphere containing hydrogen fluoride gas to remove the deposit on the substrate after the step of exposing the substrate to the oxygen plasma.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: November 3, 2015
    Assignees: TOKYO ELECTRON LIMITED, KABUSHIKI KAISHA TOSHIBA
    Inventors: Shigeru Tahara, Eiichi Nishimura, Takanori Matsumoto
  • Patent number: 9177781
    Abstract: A plasma processing method in which performing a plasma etching on metal layers formed on a substrate is conducted to form a pattern having the metal layers in a stacked structure, and then a deposit containing a metal that forms the metal layers and being deposited on a sidewall portion of the pattern is removed, the method includes: forming a protective layer by forming an oxide or chloride of the metal on sidewall portions of the metal layers; removing the deposit by applying a plasma of a gas containing fluorine atoms; and reducing the oxide or chloride of the metal by applying a plasma containing hydrogen after forming the protective layer and removing the deposit.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: November 3, 2015
    Assignees: TOKYO ELECTRON LIMITED, KABUSHIKI KAISHA TOSHIBA
    Inventors: Shigeru Tahara, Eiichi Nishimura, Fumiko Yamashita, Hiroshi Tomita, Tokuhisa Ohiwa, Hisashi Okuchi, Mitsuhiro Omura
  • Patent number: 9126229
    Abstract: A deposit removal method for removing deposits deposited on the surface of a pattern formed on a substrate by etching, includes an oxygen plasma treatment process for exposing the substrate to oxygen plasma while heating the substrate and a cycle treatment process for, after the oxygen plasma treatment process, repeating multiple cycles of a first period and a second period. In the first period, the substrate is exposed to a mixture of hydrogen fluoride gas and alcohol gas inside a processing chamber and the partial pressure of the alcohol gas is set to the first partial pressure. In the second period, the partial pressure of the alcohol gas is set to the second partial pressure lower than the first partial pressure by exhausting the inside of the processing chamber.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: September 8, 2015
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Shigeru Tahara, Eiichi Nishimura, Hiroshi Tomita, Tokuhisa Ohiwa, Hisashi Okuchi, Mitsuhiro Omura
  • Publication number: 20150214473
    Abstract: A method for performing post-etch annealing of a workpiece in an annealing system is described. In particular, the method includes disposing one or more workpieces in an annealing system, each of the one or more workpieces having a multilayer stack of thin films that has been patterned using an etching process sequence to form an electronic device characterized by a cell critical dimension (CD), wherein the multilayer stack of thin films includes at least one patterned layer containing magnetic material. Thereafter, the patterned layer containing magnetic material on the one or more workpieces is annealed in the annealing system via an anneal process condition, wherein the anneal process condition is selected to adjust a property of the patterned layer containing magnetic material.
    Type: Application
    Filed: January 12, 2015
    Publication date: July 30, 2015
    Inventors: David F. Hurley, Doni Parnell, Shigeru Tahara, Toru Ishii
  • Patent number: 9023733
    Abstract: The present disclosure relates to a method (10) for block-copolymer lithography. This method comprises the step of obtaining (12) a self-organizing block-copolymer layer comprising at least two polymer components having mutually different etching resistances, and the steps of applying at least once each of first plasma etching (14) of said self-organizing block-copolymer layer using a plasma formed from a substantially ashing gas, and second plasma etching (16) of said self-organizing block-copolymer layer using plasma formed from a pure inert gas or mixture of inert gases in order to selectively remove a first polymer phase. A corresponding intermediate product also is described.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: May 5, 2015
    Assignees: IMEC, Tokyo Electron Limited
    Inventors: Boon Teik Chan, Shigeru Tahara
  • Patent number: 8986493
    Abstract: When a substrate is etched by using a processing gas including a first gas containing halogen and carbon and having a carbon number of two or less per molecule, while supplying the processing gas toward the substrate independently from a central and a peripheral portion of a gas supply unit, which face the central and the periphery part of the substrate respectively, the processing gas is supplied such that a gas flow rate is greater in the central portion than in the peripheral portion. When the substrate is etched by using a processing gas including a second gas containing halogen and carbon and having a carbon number of three or more per molecule, the processing gas is supplied such that a gas flow rate is greater in the peripheral portion than in the central portion.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: March 24, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Shigeru Tahara, Masaru Nishino