Patents by Inventor Shih-Chang Liu

Shih-Chang Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190241425
    Abstract: The present disclosure involves forming a method of fabricating a Micro-Electro-Mechanical System (MEMS) device. A plurality of openings is formed in a first side of a first substrate. A dielectric layer is formed over the first side of the substrate. A plurality of segments of the dielectric layer fills the openings. The first side of the first substrate is bonded to a second substrate that contains a cavity. The bonding is performed such that the segments of the dielectric layer are disposed over the cavity. A portion of the first substrate disposed over the cavity is transformed into a plurality of movable components of a MEMS device. The movable components are in physical contact with the dielectric the layer. Thereafter, a portion of the dielectric layer is removed without using liquid chemicals.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 8, 2019
    Inventors: Lee-Chuan Tseng, Chang-Ming Wu, Shih-Chang Liu, Yuan-Chih Hsieh
  • Patent number: 10361234
    Abstract: An interconnect apparatus and a method of forming the interconnect apparatus is provided. Two substrates, such as wafers, dies, or a wafer and a die, are bonded together. A first mask is used to form a first opening extending partially to an interconnect formed on the first wafer. A dielectric liner is formed, and then another etch process is performed using the same mask. The etch process continues to expose interconnects formed on the first substrate and the second substrate. The opening is filled with a conductive material to form a conductive plug.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: July 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih Pei Chou, Hung-Wen Hsu, Ching-Chung Su, Chun-Han Tsao, Chia-Chieh Lin, Shu-Ting Tsai, Jiech-Fun Lu, Shih-Chang Liu, Yeur-Luen Tu, Chia-Shiung Tsai
  • Patent number: 10355011
    Abstract: Methods for forming semiconductor structures are provided. The method for forming the semiconductor structure includes forming a control gate over a substrate and forming a dielectric layer covering the control gate. The method further includes forming a conductive layer having a first portion and a second portion over the dielectric layer. In addition, the first portion of the conductive layer is separated from the control gate by the dielectric layer. The method further includes forming an oxide layer on a top surface of the first portion of the conductive layer and removing the second portion of the conductive layer to form a memory gate.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: July 16, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Fu-Ting Sung, Chung-Chiang Min, Wei-Hang Huang, Shih-Chang Liu, Chia-Shiung Tsai
  • Patent number: 10325910
    Abstract: A semiconductor structure with a MISFET and a HEMT region includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A third III-V compound layer is disposed on the second III-V compound layer is different from the second III-V compound layer in composition. A source feature and a drain feature are disposed in each of the MISFET and HEMT regions on the third III-V compound layer. A gate electrode is disposed over the second III-V compound layer between the source feature and the drain feature. A gate dielectric layer is disposed under the gate electrode in the MISFET region but above the top surface of the third III-V compound layer.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: June 18, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Yen Chou, Sheng-De Liu, Fu-Chih Yang, Shih-Chang Liu, Chia-Shiung Tsai
  • Publication number: 20190165188
    Abstract: A semiconductor device includes a capacitive device, a first conductive via, and a second conductive via. The capacitive device includes a first conductive plate, a first insulating plate, a second conductive plate, a second insulating plate, and a third conductive plate. The first conductive via is electrically coupled to the first conductive plate and the third conductive plate, and the first conductive via penetrated through a first film stack with a first thickness. The second conductive via is electrically coupled to the second conductive plate, and the second conductive via penetrated through a second film stack with a second thickness. The second thickness is substantially equal to the first thickness.
    Type: Application
    Filed: September 20, 2018
    Publication date: May 30, 2019
    Inventors: YU-HSING CHANG, CHERN-YOW HSU, SHIH-CHANG LIU
  • Patent number: 10304848
    Abstract: An integrated circuit for a flash memory device with enlarged spacing between select and memory gate structures is provided. The enlarged spacing is obtained by forming corner recesses at the select gate structure so that a top surface with a reduced dimension of the select gate structure is obtained. In one example, a semiconductor substrate having memory cell devices formed thereon, the memory cell devices includes a semiconductor substrate having memory cell devices formed thereon, the memory cell devices includes a plurality of select gate structures and a plurality of memory gate structures formed adjacent to the plurality of select gate structures, wherein at least one of the plurality of select gate structures have a corner recess formed below a top surface of the at least one of the plurality of select gate structures.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: May 28, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sheng-Chieh Chen, Ming Chyi Liu, Shih-Chang Liu
  • Publication number: 20190157544
    Abstract: The present disclosure provides a method for manufacturing a semiconductor structure. The method includes (1) providing a substrate, (2) depositing a first electrode layer over the substrate, (3) depositing a magnetic tunneling junction (MTJ) layer on the first electrode layer, (4) depositing a second electrode layer on the MTJ layer, (5) patterning the first electrode layer, the MTJ layer and the second electrode layer to form a first electrode, an MTJ and a second electrode, (6) forming a first dielectric layer over the first electrode, the MTJ, and the second electrode, (7) removing a portion of the first dielectric layer, (8) forming a second dielectric layer over the first electrode, the MTJ, the second electrode, and an unremoved portion of the first dielectric layer. A semiconductor structure is also disclosed.
    Type: Application
    Filed: August 23, 2018
    Publication date: May 23, 2019
    Inventors: CHERN-YOW HSU, SHIH-CHANG LIU
  • Patent number: 10297604
    Abstract: Some embodiments of the present disclosure relate to method of forming a memory device. In some embodiments, the method may be performed by forming a floating gate over a first dielectric on a substrate. A control gate is formed over the floating gate and first and second spacers are formed along sidewalls of the control gate. The first and second spacers extend past outer edges of an upper surface of the floating gate. An etching process is performed on the first and second spacers to remove a portion of the first and second spacers that extends past the outer edges of the upper surface of the floating gate along an interface between the first and second spacers and the floating gate.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: May 21, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chang-Ming Wu, Shih-Chang Liu, Chia-Shiung Tsai, Ru-Liang Lee
  • Publication number: 20190148638
    Abstract: A memory structure includes a first dielectric layer, having a first top surface, over a conductive structure. A first opening in the first dielectric layer exposes an area of the conductive structure, and has an interior sidewall. A first electrode structure, having a first portion and a second portion, is over the exposed area of the conductive structure. The second portion extends upwardly along the interior sidewall. A resistance variable layer is disposed over the first electrode. A second electrode structure, having a third portion and a fourth portion, is over the resistance variable layer. The third portion has a second top surface below the first top surface of the first dielectric layer. The fourth portion extends upwardly along the resistance variable layer. A second opening is defined by the second electrode structure. At least a part of a second dielectric layer is disposed in the second opening.
    Type: Application
    Filed: December 18, 2018
    Publication date: May 16, 2019
    Inventors: Fu-Ting Sung, Ching-Pei Hsieh, Chia-Shiung Tsai, Chern-Yow Hsu, Shih-Chang Liu
  • Publication number: 20190140169
    Abstract: A magnetoresistive random access memory (MRAM) structure includes a bottom electrode structure. A magnetic tunnel junction (MTJ) element is over the bottom electrode structure. The MTJ element includes an anti-ferromagnetic material layer. A ferromagnetic pinned layer is over the anti-ferromagnetic material layer. A tunneling layer is over the ferromagnetic pinned layer. A ferromagnetic free layer is over the tunneling layer. The ferromagnetic free layer has a first portion and a demagnetized second portion. The MRAM also includes a top electrode structure over the first portion.
    Type: Application
    Filed: December 28, 2018
    Publication date: May 9, 2019
    Inventors: Chern-Yow Hsu, Wei-Hang Huang, Shih-Chang Liu, Chia-Shiung Tsai
  • Patent number: 10283700
    Abstract: A semiconductor memory structure is provided. The semiconductor memory structure includes a bottom electrode formed over a substrate and a magnetic tunneling junction (MTJ) cell formed over the bottom electrode. The semiconductor memory structure also includes a top electrode formed over the MTJ cell; and a first sidewall spacer layer formed on a top surface of the MTJ cell and an outer sidewall surface of the top electrode.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: May 7, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Wei Lin, Yuan-Tai Tseng, Shih-Chang Liu
  • Publication number: 20190129098
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes: a substrate and a gate element over the substrate. The gate element includes: a gate dielectric layer over the substrate; a gate electrode over the gate dielectric layer; and a waveguide passing through the gate electrode from a top surface of the gate electrode to a bottom surface of the gate electrode. A manufacturing method of the same is also disclosed.
    Type: Application
    Filed: January 19, 2018
    Publication date: May 2, 2019
    Inventors: YUNG-CHANG CHANG, CHUNG-YEN CHOU, MING-CHYI LIU, SHIH-CHANG LIU
  • Patent number: 10276584
    Abstract: A semiconductor structure for a split gate flash memory cell device with a hard mask having an asymmetric profile is provided. In some embodiments, a semiconductor substrate of the semiconductor structure includes a first source/drain region and a second source/drain region. A control gate and a memory gate, of the semiconductor structure, are spaced over the semiconductor substrate between the first and second source/drain regions. A charge trapping dielectric structure of the semiconductor structure is arranged between neighboring sidewalls of the memory gate and the control gate, and arranged under the memory gate. A hard mask of the semiconductor structure is arranged over the control gate and includes an asymmetric profile. The asymmetric profile tapers in height away from the memory gate. A method for manufacturing a pair of split gate flash memory cell devices with hard masks having an asymmetric profile is also provided.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Chiang Min, Tsung-Hsueh Yang, Chang-Ming Wu, Shih-Chang Liu
  • Patent number: 10276634
    Abstract: A semiconductor memory structure is provided. The semiconductor memory structure includes a bottom electrode formed over a substrate and a magnetic tunneling junction (MTJ) cell formed over the bottom electrode. The semiconductor memory structure includes a top electrode formed over the MTJ cell and a passivation layer surrounding the top electrode. The passivation layer has a recessed portion that is lower than a top surface of the top electrode. The semiconductor memory structure further includes a cap layer formed on the top electrode and the passivation layer, wherein the cap layer is formed in the recessed portion.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: April 30, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Wei Lin, Yuan-Tai Tseng, Shih-Chang Liu
  • Patent number: 10273143
    Abstract: The present disclosure involves forming a method of fabricating a Micro-Electro-Mechanical System (MEMS) device. A plurality of openings is formed in a first side of a first substrate. A dielectric layer is formed over the first side of the substrate. A plurality of segments of the dielectric layer fills the openings. The first side of the first substrate is bonded to a second substrate that contains a cavity. The bonding is performed such that the segments of the dielectric layer are disposed over the cavity. A portion of the first substrate disposed over the cavity is transformed into a plurality of movable components of a MEMS device. The movable components are in physical contact with the dielectric the layer. Thereafter, a portion of the dielectric layer is removed without using liquid chemicals.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: April 30, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lee-Chuan Tseng, Chang-Ming Wu, Shih-Chang Liu, Yuan-Chih Hsieh
  • Patent number: 10269575
    Abstract: A semiconductor device includes a channel having a first linear surface and a first non-linear surface. The first non-linear surface defines a first external angle of about 80 degrees to about 100 degrees and a second external angle of about 80 degrees to about 100 degrees. The semiconductor device includes a dielectric region covering the channel between a source region and a drain region. The semiconductor device includes a gate electrode covering the dielectric region between the source region and the drain region.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Xiaomeng Chen, Chien-Hong Chen, Shih-Chang Liu, Zhiqiang Wu
  • Patent number: 10269807
    Abstract: A semiconductor arrangement includes an active region including a semiconductor device. The semiconductor arrangement includes a capacitor having a first electrode layer, a second electrode layer, and an insulating layer between the first electrode layer and the second electrode layer. At least three dielectric layers are between a bottom surface of the capacitor and the active region.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chern-Yow Hsu, Chen-Jong Wang, Chia-Shiung Tsai, Shih-Chang Liu, Xiaomeng Chen
  • Patent number: 10270025
    Abstract: The present disclosure provides a semiconductor structure, including an Nth metal layer over a transistor region, where N is a natural number, and a bottom electrode over the Nth metal layer. The bottom electrode comprises a bottom portion having a first width, disposed in a bottom electrode via (BEVA), the first width being measured at a top surface of the BEVA, and an upper portion having a second width, disposed over the bottom portion. The semiconductor structure also includes a magnetic tunneling junction (MTJ) layer having a third width, disposed over the upper portion, a top electrode over the MTJ layer and an (N+1)th metal layer over the top electrode. The first width is greater than the third width.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry-Hak-Lay Chuang, Shih-Chang Liu, Chern-Yow Hsu, Kuei-Hung Shen
  • Publication number: 20190115531
    Abstract: A manufacture includes a first electrode having an upper surface and a side surface, a resistance variable film over the first electrode, and a second electrode over the resistance variable film. The resistance variable film extends along the upper surface and the side surface of the first electrode. The second electrode has a side surface. A portion of the side surface of the first electrode and a portion of the side surface of the second electrode sandwich a portion of the resistance variable film.
    Type: Application
    Filed: December 12, 2018
    Publication date: April 18, 2019
    Inventors: Ching-Pei Hsieh, Chia-Shiung Tsai, Chern-Yow Hsu, Fu-Ting Sung, Shih-Chang Liu
  • Publication number: 20190109223
    Abstract: Present disclosure provides a method for manufacturing a semiconductor device, including providing a substrate, forming a first III-V compound layer over the substrate, forming a first passivation layer over the first III-V compound layer, forming a first opening from a top surface of the first passivation layer to the first III-V compound layer, each opening having a stair-shaped sidewall at the first passivation layer, depositing a metal layer over the first passivation layer and in the first opening, the metal layer having a second opening above the corresponding first opening, and removing a portion of the metal layer to form a source electrode and a drain electrode.
    Type: Application
    Filed: November 26, 2018
    Publication date: April 11, 2019
    Inventors: Sheng-De Liu, Chung-Yen Chou, Shih-Chang Liu