Patents by Inventor Shih-Chang Liu

Shih-Chang Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200098768
    Abstract: Various embodiments provide a flash memory with an improved gate structure and a method of creating the same. The flash memory includes a plurality of memory cells that include a memory gate, a selection gate, a gate dielectric layer, and a protective cap formed on an upper surface of the gate dielectric layer. The protective cap protects the gate dielectric layer, and prevents the memory and selection gates from being unintentionally electrically connected to each other by conductive material.
    Type: Application
    Filed: March 20, 2019
    Publication date: March 26, 2020
    Inventors: SHENG-CHIEH CHEN, MING CHYI LIU, SHIH-CHANG LIU
  • Publication number: 20200081185
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes: a substrate and a gate element over the substrate. The gate element includes: a gate dielectric layer over the substrate; a gate electrode over the gate dielectric layer; and a waveguide passing through the gate electrode from a top surface of the gate electrode to a bottom surface of the gate electrode. A manufacturing method of the same is also disclosed.
    Type: Application
    Filed: November 13, 2019
    Publication date: March 12, 2020
    Inventors: YUNG-CHANG CHANG, CHUNG-YEN CHOU, MING-CHYI LIU, SHIH-CHANG LIU
  • Publication number: 20200083441
    Abstract: An integrated circuit device includes a substrate and a magnetic tunneling junction (MTJ). The MTJ includes at least a pinned layer, a barrier layer, and a free layer. The MTJ is formed over a surface of the substrate. Of the pinned layer, the barrier layer, and the free layer, the free layer is formed first and is closest to the surface. This enables a spacer to be formed over a perimeter region of the free layer prior to etching the free layer. Any damage to the free layer that results from etching or other free layer edge-defining process is kept at a distance from the tunneling junction by the spacer.
    Type: Application
    Filed: November 14, 2019
    Publication date: March 12, 2020
    Inventors: Wei-Hang Huang, Fu-Ting Sung, Chern-Yow Hsu, Shih-Chang Liu, Chia-Shiung Tsai
  • Publication number: 20200075856
    Abstract: A semiconductor structure and a method for forming the same are provided. The method for manufacturing a semiconductor structure includes forming a bottom electrode layer over a substrate and forming a dielectric layer over the bottom electrode layer. The method for manufacturing a semiconductor structure further includes forming a top electrode layer over the dielectric layer and patterning the bottom electrode layer, the dielectric layer, and the top electrode layer to form a dielectric structure between a bottom electrode and a top electrode. The method for manufacturing a semiconductor structure further includes etching the bottom electrode from a sidewall of the bottom electrode to partially expose a bottom surface of the dielectric structure.
    Type: Application
    Filed: November 8, 2019
    Publication date: March 5, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Chern-Yow HSU, Fu-Ting SUNG, Shih-Chang LIU
  • Publication number: 20200075855
    Abstract: Various embodiments of the present application are directed towards an integrated circuit comprising a resistive random-access memory (RRAM) cell with recessed bottom electrode sidewalls to mitigate the effect of sidewall plasma damage. In some embodiments, the RRAM cell includes a lower electrode, a data storage element, and an upper electrode. The lower electrode includes a pair of recessed bottom electrode sidewalls respectively on opposite sides of the lower electrode. The data storage element overlies the lower electrode and includes a pair of storage sidewalls. The storage sidewalls are respectively on the opposite sides of the lower electrode, and the recessed bottom electrode sidewalls are laterally spaced from and laterally between the storage sidewalls. The upper electrode overlies the data storage element.
    Type: Application
    Filed: November 5, 2019
    Publication date: March 5, 2020
    Inventors: Yuan-Tai Tseng, Shih-Chang Liu
  • Publication number: 20200075600
    Abstract: A semiconductor arrangement includes an active region including a semiconductor device. The semiconductor arrangement includes a capacitor. The capacitor includes a first electrode over at least one dielectric layer over the active region. The first electrode surrounds an open space within the capacitor. The first electrode has a non-linear first electrode sidewall.
    Type: Application
    Filed: November 8, 2019
    Publication date: March 5, 2020
    Inventors: Chern-Yow HSU, Chen-Jong WANG, Chia-Shiung TSAI, Ming Chyi LIU, Shih-Chang LIU, Xiaomeng CHEN
  • Publication number: 20200066971
    Abstract: A semiconductor structure includes an Nth metal layer, a diffusion barrier layer over the Nth metal layer, a first deposition of bottom electrode material over the diffusion barrier layer, a second deposition of bottom electrode material over the first deposition of bottom electrode material, a magnetic tunneling junction (MTJ) layer over the second deposition of bottom electrode material, a top electrode over the MTJ layer; and an (N+1)th metal layer over the top electrode; wherein the diffusion barrier layer and the first deposition of bottom electrode material are laterally in contact with a dielectric layer, the first deposition of bottom electrode material spacing the diffusion barrier layer and the second deposition of bottom electrode material apart, and N is an integer greater than or equal to 1. An associated electrode structure and method are also disclosed.
    Type: Application
    Filed: October 30, 2019
    Publication date: February 27, 2020
    Inventors: CHUNG-YEN CHOU, FU-TING SUNG, YAO-WEN CHANG, SHIH-CHANG LIU
  • Patent number: 10573811
    Abstract: Various embodiments of the present application are directed towards an integrated circuit comprising a resistive random-access memory (RRAM) cell with recessed bottom electrode sidewalls to mitigate the effect of sidewall plasma damage. In some embodiments, the RRAM cell includes a lower electrode, a data storage element, and an upper electrode. The lower electrode includes a pair of recessed bottom electrode sidewalls respectively on opposite sides of the lower electrode. The data storage element overlies the lower electrode and includes a pair of storage sidewalls. The storage sidewalls are respectively on the opposite sides of the lower electrode, and the recessed bottom electrode sidewalls are laterally spaced from and laterally between the storage sidewalls. The upper electrode overlies the data storage element.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: February 25, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yuan-Tai Tseng, Shih-Chang Liu
  • Publication number: 20200052082
    Abstract: An exemplary method includes forming a common source region in a substrate, and forming an isolation feature over the common source region. The common source region is disposed between the substrate and the isolation feature. The common source region and the isolation feature span a plurality of active regions of the substrate. A gate, such as an erase gate, may be formed after forming the common source region. In some implementations, the common source region is formed by etching the substrate to form a saw-tooth shaped recess region (or a U-shaped recess region) and performing an ion implantation process to form a doped region in a portion of the saw-tooth shaped recess region (or the U-shaped recess region), such that the common source region has a sawtooth profile (or a U-shaped profile).
    Type: Application
    Filed: October 18, 2019
    Publication date: February 13, 2020
    Inventors: Ming Chyi Liu, Chang-Ming Wu, Shih-Chang Liu, Wei Cheng Wu, Harry-Hak-Lay Chuang, Chia-Shiung Tsai, Ru-Liang Lee
  • Patent number: 10553785
    Abstract: This description relates to a method for fabricating a magnetoresistive random access memory (MRAM) device having a plurality of magnetic tunnel junction (MTJ) units. The method includes forming a bottom conductive layer, forming an anti-ferromagnetic layer and forming a tunnel layer over the bottom conductive layer and the anti-ferromagnetic layer. The method further includes forming a free magnetic layer, having a magnetic moment aligned in a direction that is adjustable by applying an electromagnetic field, over the tunnel layer and forming a top conductive layer over the free magnetic layer. The method further includes performing at least one lithographic process to remove portions of the bottom conductive layer, the anti-ferromagnetic layer, the tunnel layer, the free magnetic layer and the top conductive layer that is uncovered by the photoresist layer until the bottom conductive layer is exposed and removing portions of at least one sidewall of the MTJ unit.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: February 4, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chern-Yow Hsu, Shih-Chang Liu, Chia-Shiung Tsai
  • Publication number: 20200035919
    Abstract: A phase change memory (PCM) cell with enhanced thermal isolation and low power consumption is provided. In some embodiments, the PCM cell comprises a bottom electrode, a dielectric layer, a heating element, and a phase change element. The dielectric layer is on the bottom electrode. The heating element extends through the dielectric layer, from a top of the dielectric layer to the bottom electrode. Further, the heating element has a pair of opposite sidewalls laterally spaced from the dielectric layer by a cavity. The phase change element overlies and contacts the heating element. An interface between the phase change element and the heating element extends continuously respectively from and to the opposite sidewalls of the heating element. Also provided is a method for manufacturing the PCM cell.
    Type: Application
    Filed: October 2, 2019
    Publication date: January 30, 2020
    Inventors: Yi Jen Tsai, Shih-Chang Liu
  • Publication number: 20200028075
    Abstract: A phase change memory (PCM) cell with a low deviation contact area between a heater and a phase change element is provided. The PCM cell comprises a bottom electrode, a dielectric layer, a heater, a phase change element, and a top electrode. The dielectric layer overlies the bottom electrode. The heater extends upward from the bottom electrode, through the dielectric layer. Further, the heater has a top surface that is substantially planar and that is spaced below a top surface of the dielectric layer. The phase change element overlies the dielectric layer and protrudes into the dielectric layer to contact with the top surface of the heater. Also provided is a method for manufacturing the PCM cell.
    Type: Application
    Filed: September 30, 2019
    Publication date: January 23, 2020
    Inventors: Yi Jen Tsai, Shih-Chang Liu
  • Publication number: 20200020856
    Abstract: The present disclosure relates to a resistive random access memory (RRAM) device architecture, that includes a thin single layer of a conductive etch-stop layer between a lower metal interconnect and a bottom electrode of an RRAM cell. The conductive etch-stop layer provides simplicity in structure and the etch-selectivity of this layer provides protection to the underlying layers. The conductive etch stop layer can be etched using a dry or wet etch to land on the lower metal interconnect. In instances where the lower metal interconnect is copper, etching the conductive etch stop layer to expose the copper does not produce as much non-volatile copper etching by-products as in traditional methods. Compared to traditional methods, some embodiments of the disclosed techniques reduce the number of mask step and also reduce chemical mechanical polishing during the formation of the bottom electrode.
    Type: Application
    Filed: September 21, 2019
    Publication date: January 16, 2020
    Inventors: Ming Chyi Liu, Yuan-Tai Tseng, Chern-Yow Hsu, Shih-Chang Liu, Chia-Shiung Tsai
  • Patent number: 10535814
    Abstract: Some embodiments relate to an integrated circuit including a magnetoresistive random-access memory (MRAM) cell. The integrated circuit includes a semiconductor substrate and an interconnect structure disposed over the semiconductor substrate. The interconnect structure includes a plurality of dielectric layers and a plurality of metal layers that are stacked over one another in alternating fashion. The plurality of metal layers include a lower metal layer and an upper metal layer disposed over the lower metal layer. A bottom electrode is disposed over and in electrical contact with the lower metal layer. A magnetic tunneling junction (MTJ) is disposed over an upper surface of bottom electrode. A top electrode is disposed over an upper surface of the MTJ and is in direct electrical contact with a lower surface of the upper metal layer.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: January 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Harry-Hak-Lay Chuang, Chern-Yow Hsu, Shih-Chang Liu
  • Patent number: 10535671
    Abstract: Various embodiments of the present application are directed to a method for forming an embedded memory boundary structure with a boundary sidewall spacer. In some embodiments, an isolation structure is formed in a semiconductor substrate to separate a memory region from a logic region. A multilayer film is formed covering the semiconductor substrate. A memory structure is formed on the memory region from the multilayer film. An etch is performed into the multilayer film to remove the multilayer film from the logic region, such that the multilayer film at least partially defines a dummy sidewall on the isolation structure. A spacer layer is formed covering the memory structure, the isolation structure, and the logic region, and further lining the dummy sidewall. An etch is performed into the spacer layer to form a spacer on dummy sidewall from the spacer layer. A logic device structure is formed on the logic region.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: January 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming Chyi Liu, Shih-Chang Liu, Sheng-Chieh Chen, Yu-Hsing Chang
  • Publication number: 20200013953
    Abstract: In some methods, a contact is formed over a substrate, and a bottom electrode layer is formed over the contact. A first dielectric layer is formed to cover a peripheral portion of the bottom electrode layer but not a central portion of the bottom electrode layer. A second dielectric layer is formed over the first dielectric layer. The second dielectric layer includes a central dielectric region that contacts the central portion of the bottom electrode layer, and a peripheral dielectric region over the peripheral portion of the bottom electrode. A step dielectric region connects the central and peripheral dielectric regions. A top electrode layer is formed over the second dielectric layer. The top electrode layer includes a central top electrode region, a peripheral top electrode region, and a step top electrode region directly above the central dielectric region, the peripheral dielectric region, and the step dielectric region, respectively.
    Type: Application
    Filed: September 19, 2019
    Publication date: January 9, 2020
    Inventors: Ming Chyi Liu, Yuan-Tai Tseng, Shih-Chang Liu, Chia-Shiung Tsai
  • Patent number: 10529916
    Abstract: An integrated circuit device includes a substrate and a magnetic tunneling junction (MTJ). The MTJ includes at least a pinned layer, a barrier layer, and a free layer. The MTJ is formed over a surface of the substrate. Of the pinned layer, the barrier layer, and the free layer, the free layer is formed first and is closest to the surface. This enables a spacer to be formed over a perimeter region of the free layer prior to etching the free layer. Any damage to the free layer that results from etching or other free layer edge-defining process is kept at a distance from the tunneling junction by the spacer.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: January 7, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Hang Huang, Fu-Ting Sung, Chern-Yow Hsu, Shih-Chang Liu, Chia-Shiung Tsai
  • Publication number: 20200006653
    Abstract: Various embodiments of the present application are directed towards an integrated circuit comprising a resistive random-access memory (RRAM) cell with recessed bottom electrode sidewalls to mitigate the effect of sidewall plasma damage. In some embodiments, the RRAM cell includes a lower electrode, a data storage element, and an upper electrode. The lower electrode includes a pair of recessed bottom electrode sidewalls respectively on opposite sides of the lower electrode. The data storage element overlies the lower electrode and includes a pair of storage sidewalls. The storage sidewalls are respectively on the opposite sides of the lower electrode, and the recessed bottom electrode sidewalls are laterally spaced from and laterally between the storage sidewalls. The upper electrode overlies the data storage element.
    Type: Application
    Filed: September 4, 2019
    Publication date: January 2, 2020
    Inventors: Yuan-Tai Tseng, Shih-Chang Liu
  • Patent number: 10522532
    Abstract: A process for manufacturing an integrated circuit (IC) with a through via extending through a group III-V layer to a diode is provided. An etch is performed through the group III-V layer, into a semiconductor substrate underlying the group III-V layer, to form a via opening. A doped region is formed in the semiconductor substrate, through the via opening. Further, the doped region is formed with an opposite doping type as a surrounding region of the semiconductor substrate. The through via is formed in the via opening and in electrical communication with the doped region.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: December 31, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Yen Chou, Chia-Shiung Tsai, Shih-Chang Liu, Yung-Chang Chang
  • Patent number: 10516026
    Abstract: The present disclosure, in some embodiments, relates to a method of forming a memory cell. The method may be performed by forming a select gate on a side of a sacrificial spacer that is disposed over an upper surface of a substrate. The select gate has a non-planar top surface. An inter-gate dielectric layer is formed on the select gate and a memory gate is formed on the inter-gate dielectric layer. The inter-gate dielectric layer extends under the memory gate and defines a recess between sidewalls of the memory gate and select gate. The recess is filled with a first dielectric material.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: December 24, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chang-Ming Wu, Wei Cheng Wu, Shih-Chang Liu, Harry-Hak-Lay Chuang, Chia-Shiung Tsai