Patents by Inventor Shih-Hsiung Huang

Shih-Hsiung Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230134950
    Abstract: A method of converting a single-ended signal to a differential-ended signal includes the following steps: providing a first sampling capacitor having a first end and a second end; providing a second sampling capacitor having a third end and a fourth end; at a first time point, controlling the first end to receive a single-ended signal, controlling the second end to receive a reference voltage, controlling the third end to receive the reference voltage or a middle voltage value of the swing of the single-ended signal, and controlling the fourth end to receive the single-ended signal; and at a second time point, controlling the second end and the fourth end to receive the reference voltage. The first end and the third end output a differential signal after the second time point which is later than the first time point.
    Type: Application
    Filed: July 14, 2022
    Publication date: May 4, 2023
    Inventors: SHENG-YEN SHIH, SHIH-HSIUNG HUANG, WEI-CIAN HONG
  • Patent number: 11641209
    Abstract: A time-interleaved analog to digital converter includes capacitor array circuits, at least one successive approximation register circuitry, and at least one noise shaping circuitry. The capacitor array circuits are configured to alternately sample an input signal, in order to generate a sampled input signal. The at least one successive approximation register circuitry is configured to perform an analog to digital conversion according to the sampled input signal and a residue signal, in order to generate at least one digital output. The at least one noise shaping circuitry is configured to utilize at least one first circuit in switched-capacitor circuits to transfer the residue signal from a first capacitor array circuit in the capacitor array circuits, and randomly select at least one second circuit from the switched-capacitor circuits to cooperate with a second capacitor array circuit in the capacitor array circuits to sample the input signal.
    Type: Grant
    Filed: October 1, 2021
    Date of Patent: May 2, 2023
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventor: Shih-Hsiung Huang
  • Patent number: 11637558
    Abstract: An analog-to-digital converter includes a switch circuit, a first capacitor array, a second capacitor array and a comparator. A method of operating the analog-to-digital converter includes switching a swap signal to a first level in a first sampling period for the switch circuit to couple the first capacitor array to a first input terminal of the comparator and a first signal source, and couple the second capacitor array to a second input terminal of the comparator and a second signal source, and switching the swap signal to a second level in a second sampling period for the switch circuit to couple the first capacitor array to the second input terminal of the comparator and the second signal source, and couple the second capacitor array to the first input terminal of the comparator and the first signal source.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: April 25, 2023
    Assignee: Realtek Semiconductor Corp.
    Inventors: Kai-Yue Lin, Wei-Jyun Wang, Shih-Hsiung Huang, Kai-Yin Liu
  • Patent number: 11637559
    Abstract: A method of operating an analog-to-digital converter includes in a first conversion period, a comparator generating a first comparison result, a first selection circuit switching a voltage output to a first capacitor of a set of larger capacitor of a first capacitor array, and a second selection circuit switching a voltage output to a second capacitor of a set of larger capacitor of a second capacitor array, and in a second conversion period after the first conversion period, the comparator generating a second comparison result different from the first comparison result, the first selection circuit switching back the voltage output to a first capacitor portion of the first capacitor of the set of larger capacitor of the first capacitor array, and the second selection circuit switching back the voltage output to a first capacitor portion of the second capacitor of the set of larger capacitor of the second capacitor array.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: April 25, 2023
    Assignee: Realtek Semiconductor Corp.
    Inventors: Kai-Yue Lin, Wei-Jyun Wang, Shih-Hsiung Huang, Kai-Yin Liu
  • Publication number: 20230115471
    Abstract: A successive approximation register analog to digital converter includes a charge injection digital to analog converter (DAC) circuit, a comparator circuit, and a control logic circuitry. The charge injection DAC circuit includes capacitors that sample input signals to generate first and second signals and charge injection circuits that selectively adjust the first or the second signals according to enable signals and decision signals. The comparator circuit compares the first and second signals to generate the decision signals. The control logic circuitry controls a circuit of the charge injection circuits to adjust the first and the second signals during an initial phase, in order to adjust a switching sequence of the circuit according to the decision signals corresponding to the initial phase, and generates the enable signals according to the decision signals and the adjusted switching sequence during a conversion phase to generate a digital output.
    Type: Application
    Filed: July 5, 2022
    Publication date: April 13, 2023
    Inventors: SHIH-HSIUNG HUANG, WEI-CIAN HONG, SHENG-YEN SHIH
  • Publication number: 20230116785
    Abstract: A successive approximation register analog to digital converter device includes first and second digital to analog converter (DAC) circuits, a comparator circuit, a controller circuit, and a dynamic element matching (DEM) circuit. The first and second DAC circuits samples an input signal. The comparator circuit and the controller circuit generate first and second bits according to outputs of the first and second DAC circuits. The DEM circuit encodes the first bits to generate third bits, in order to refresh the first DAC circuit. After the first DAC circuit is refreshed, the controller circuit resets partial bits in the second bits. After the partial bits are reset, the comparator circuit generates comparison results according to outputs of the first and second DAC circuits. The controller circuit generates fourth bits according to the comparison results, and generates a digital output according to the first, second, and fourth bits.
    Type: Application
    Filed: July 22, 2022
    Publication date: April 13, 2023
    Inventors: JUN YANG, SHIH-HSIUNG HUANG, YEN-TING WU
  • Publication number: 20230108624
    Abstract: A calibrating device can mitigate the static mismatch error of a digital-to-analog converter (DAC), and includes a digital code generating circuit, the DAC, an analog-to-digital converter (ADC), a filter circuit, an indicating circuit, and a statistical circuit. The digital code generating circuit generates a digital code of N digital codes. The DAC generates an analog signal corresponding to one of N signal levels according to the digital code. The ADC generates a digital signal according to the analog signal. The filter circuit generates a gradient value according to the difference between the digital code and the digital signal. The indicating circuit generates a selection signal according to the digital code. The statistical circuit learns from the selection signal that the gradient value is corresponding to a Kth digital code of the N digital codes, and determines whether the Kth digital code should be adjusted according to the gradient value.
    Type: Application
    Filed: September 28, 2022
    Publication date: April 6, 2023
    Inventors: HSUAN-TING HO, SHIH-HSIUNG HUANG, LIANG-WEI HUANG
  • Publication number: 20230105538
    Abstract: A signal receiver and a slicer are capable of mitigating the static mismatch error of a far-end digital-to-analog converter. The slicer includes an adjustable slicing circuit and an error signal generating circuit. The adjustable slicing circuit determines which of (N+1) signal levels is corresponding to an input signal according to N slicer levels and thereby outputs an output signal, wherein the input signal is originated from the far-end digital-to-analog converter. The adjustable slicing circuit further adjusts at least some of the (N+1) signal levels according to an error signal and adjusts at least some of the N slicer levels, wherein the N is an integer greater than two. The error signal generating circuit is coupled to the adjustable slicing circuit and generates the error signal according to the input and output signals.
    Type: Application
    Filed: September 26, 2022
    Publication date: April 6, 2023
    Inventors: HSUAN-TING HO, SHIH-HSIUNG HUANG, LIANG-WEI HUANG
  • Publication number: 20230091800
    Abstract: A bootstrapped switch includes a first transistor, a second transistor, a first capacitor, three switches, and a switch circuit. The switch circuit includes a first switch, a second switch, a second capacitor, and a resistor. The first transistor receives the input voltage and outputs the output voltage. The first terminal of the second transistor receives the input voltage, and the second terminal of the second transistor is coupled to the first terminal of the first capacitor. The control terminal of the first switch receives a clock. The second switch is coupled between the control terminal of the first transistor and the first switch. The second capacitor is coupled between the control terminal of the first switch and the control terminal of the second switch. The resistor is coupled between the control terminal of the second switch and a reference voltage.
    Type: Application
    Filed: May 31, 2022
    Publication date: March 23, 2023
    Inventor: SHIH-HSIUNG HUANG
  • Publication number: 20230075807
    Abstract: An amplifier circuit is provided. The amplifier circuit outputs a pair of differential output signals through a first output terminal and a second output terminal. The amplifier circuit includes a first amplifier stage electrically connected to a first node and a second node for amplifying a pair of differential input signals; a second amplifier stage which is electrically connected to the first node and the second node and coupled to the first output terminal and the second output terminal; a first switch, coupled between the first output terminal and a first reference voltage; a second switch, coupled between the second output terminal and the first reference voltage; a third switch, coupled between the first node and the first reference voltage; a fourth switch coupled between the second node and the first reference voltage; and a fifth switch coupled between a second reference voltage and the first amplifier stage.
    Type: Application
    Filed: May 10, 2022
    Publication date: March 9, 2023
    Inventor: SHIH-HSIUNG HUANG
  • Publication number: 20230048199
    Abstract: A comparison control circuit is adapted to analog-to-digital converters and low-dropout regulators. The comparison control circuit includes a comparator, a Schmitt trigger, a capacitor set and a logic circuit. The comparator is configured to output a comparison signal according to a first input signal and a second input signal, wherein the comparison signal is a first high voltage potential or a first low voltage potential. The Schmitt trigger is configured to output a trigger signal according to the comparison signal and a voltage potential range, wherein the voltage potential range is in a range from the first low voltage potential to the first high voltage potential. The capacitor set is configured to adjust the second input signal when being controlled. The logic circuit is configured to control the capacitor set according to the trigger signal to correspondingly adjust the second input signal.
    Type: Application
    Filed: December 1, 2021
    Publication date: February 16, 2023
    Applicant: REALTEK SEMICONDUCTOR CORP.
    Inventors: Liang-Huan Lei, Shih-Hsiung Huang
  • Patent number: 11581884
    Abstract: A bootstrapped switch includes a first transistor, a second transistor, a first capacitor, three switches, and a switch circuit. The switch circuit includes a first switch, a second switch, a second capacitor, and an inverter circuit. The first transistor receives the input voltage and outputs the output voltage. The first terminal of the second transistor receives the input voltage, and the second terminal of the second transistor is coupled to the first terminal of the first capacitor. The control terminal of the first switch receives a clock. The first switch is coupled between a node and a reference voltage. The second switch is coupled between the control terminal of the first transistor and the node. The input terminal of the inverter circuit is coupled to the control terminal of the first switch. The second capacitor is coupled between the node and the output terminal of the inverter circuit.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: February 14, 2023
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventor: Shih-Hsiung Huang
  • Publication number: 20230040066
    Abstract: An amplifier circuit, which has a first output terminal and a second output terminal, includes a first charge-steering amplifier, a second charge-steering amplifier, a first switch, and a second switch. The first charge-steering amplifier includes a first input terminal, a second input terminal, a first capacitor, and a second capacitor, and is used for amplifying a first input signal in a first operation period. The second charge-steering amplifier includes a third input terminal, a fourth input terminal, the first capacitor, and the second capacitor, and is used for amplifying a second input signal in a second operation period. The first capacitor and the second capacitor charge during the first operation period and discharge during the second operation period.
    Type: Application
    Filed: April 11, 2022
    Publication date: February 9, 2023
    Inventor: SHIH-HSIUNG HUANG
  • Publication number: 20230043730
    Abstract: A charge-steering amplifier circuit and a control method thereof are provided. The charge-steering amplifier circuit is used for amplifying a differential input signal and includes a sample-and-hold circuit, a charge-steering amplifier, a reference voltage generation circuit, and a switch circuit. The sample-and-hold circuit is configured to sample the differential input signal to generate first and second sampled signals. The charge-steering amplifier has a first input terminal, a second input terminal, a first output terminal, and a second output terminal. The first and second input terminals receive the first and second sampled signals, respectively. The reference voltage generation circuit is configured to generate a reference voltage according to the differential input signal. The switch circuit is configured to couple the reference voltage to the first output terminal and the second output terminal.
    Type: Application
    Filed: April 14, 2022
    Publication date: February 9, 2023
    Inventor: SHIH-HSIUNG HUANG
  • Patent number: 11567522
    Abstract: Disclosed is a voltage reference buffer circuit including a first, second, third, and fourth bias generators and a first, second, third, and fourth driving components. The first, second, third, and fourth bias generators generate bias voltages to control the first, second, third, and fourth driving components respectively. The first, second, third, and fourth driving components are coupled in sequence, wherein the first and second driving components are different types of transistors and jointly output a first reference voltage, the third and fourth driving components are different types of transistors and jointly output a second reference voltage, and the group of the first and second driving components is separated from the group of the third and fourth driving components by a resistance load.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: January 31, 2023
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Che-Wei Chang, Kai-Yin Liu, Liang-Huan Lei, Shih-Hsiung Huang
  • Patent number: 11546002
    Abstract: A transmitter, a receiver and a transceiver are provided. The transceiver includes a hybrid transceiving circuit and a common-mode voltage control circuit. The hybrid transceiving circuit includes a digital-to-analog converter (DAC) circuit, a line driver coupled to the DAC circuit, a filtering and/or amplifying circuit coupled to the line driver, and an analog-to-digital converter (ADC) circuit coupled to the filtering and/or amplifying circuit. The common-mode voltage control circuit is electrically connected to a node of the hybrid transceiving circuit and is configured to detect a common-mode voltage of the node and to adjust the common-mode voltage of the node.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: January 3, 2023
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Jian-Ru Lin, Wei-Chou Wang, Tung-Hung Sung, Shih-Hsiung Huang
  • Patent number: 11546066
    Abstract: A transmitter device includes a transmitter circuit, a voltage generator circuit, and a calibration circuit. The transmitter circuit is configured to selectively operate in a calibration mode or a normal mode in response to a first control signal, in which the transmitter circuit has a first output terminal and a second output terminal. The voltage generator circuit is configured to generate a bias voltage, in which the bias voltage has a first level in the calibration mode and has a second level in the normal mode, and the first level is different from the second level. The calibration circuit is configured to be turned on in the calibration mode according to the bias voltage and a second control signal, in order to calibrate a level of the first output terminal and a level of the second output terminal.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: January 3, 2023
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Liang-Huan Lei, Shih-Hsiung Huang
  • Publication number: 20220407531
    Abstract: The present invention discloses a DAC method having signal calibration mechanism. A first conversion circuit generates a first analog signal according to an input digital signal. A second conversion circuit generates a second analog signal according to the input digital signal and a pseudo-noise digital signal. An echo transmission circuit processes a signal on an echo path to generate an echo signal. A first and a second calibration circuits generate a first and a second calibration signals. A calibration parameter calculation circuit performs calculation according to a difference between the echo signal and a sum of the first and the second calibration signals and related path information to generate a first and a second offsets. The first and the second calibration circuits converge first and second response coefficients and update a first and a second codeword offset tables according to the first and the second offsets.
    Type: Application
    Filed: March 10, 2022
    Publication date: December 22, 2022
    Inventors: HSUAN-TING HO, SHIH-HSIUNG HUANG, LIANG-WEI HUANG
  • Publication number: 20220399858
    Abstract: The present disclosure discloses a switched capacitor amplifier apparatus for improving level-shifting. An amplifier includes input terminals and output terminals. Two capacitor circuits correspond to signal input terminals and signal output terminals and each includes a sampling capacitor circuit, a load capacitor and a level-shifting capacitor. The sampling capacitor circuit samples an input signal from one of the signal input terminals to one of the input terminals. An electrical charge neutralizing capacitor is coupled between the output terminals. The load capacitor and the level-shifting capacitor are charged according to an output from one of the output terminals in an estimation period. The level-shifting capacitor charges the load capacitor in a level-shifting period to generate an output signal at one of the signal output terminals.
    Type: Application
    Filed: February 10, 2022
    Publication date: December 15, 2022
    Inventor: SHIH-HSIUNG HUANG
  • Publication number: 20220393693
    Abstract: An analog-to-digital converter includes a switch circuit, a first capacitor array, a second capacitor array and a comparator. A method of operating the analog-to-digital converter includes switching a swap signal to a first level in a first sampling period for the switch circuit to couple the first capacitor array to a first input terminal of the comparator and a first signal source, and couple the second capacitor array to a second input terminal of the comparator and a second signal source, and switching the swap signal to a second level in a second sampling period for the switch circuit to couple the first capacitor array to the second input terminal of the comparator and the second signal source, and couple the second capacitor array to the first input terminal of the comparator and the first signal source.
    Type: Application
    Filed: December 14, 2021
    Publication date: December 8, 2022
    Applicant: Realtek Semiconductor Corp.
    Inventors: Kai-Yue Lin, Wei-Jyun Wang, Shih-Hsiung Huang, Kai-Yin Liu