Patents by Inventor Shing-Chyang Pan

Shing-Chyang Pan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230413696
    Abstract: Some embodiments relate to a method for forming an integrated chip. The method includes forming a bottom electrode over a substrate. A data storage layer is formed on the bottom electrode. A diffusion barrier layer is formed over the data storage layer. The diffusion barrier layer has a first diffusion activation temperature. A top electrode is formed over the diffusion barrier layer. The top electrode has a second diffusion activation temperature less than the first diffusion activation temperature.
    Type: Application
    Filed: July 31, 2023
    Publication date: December 21, 2023
    Inventors: Albert Zhong, Cheng-Yuan Tsai, Hai-Dang Trinh, Shing-Chyang Pan
  • Publication number: 20230382712
    Abstract: Various embodiments of the present disclosure are directed towards a microelectromechanical system (MEMS) device. The MEMS device includes a dielectric structure disposed over a first semiconductor substrate, where the dielectric structure at least partially defines a cavity. A second semiconductor substrate is disposed over the dielectric structure. The second semiconductor substrate includes a movable mass, where opposite sidewalls of the movable mass are disposed between opposite sidewall of the cavity. An anti-stiction structure is disposed between the movable mass and the dielectric structure, where the anti-stiction structure is a first silicon-based semiconductor.
    Type: Application
    Filed: August 3, 2023
    Publication date: November 30, 2023
    Inventors: Kuei-Sung Chang, Chun-Wen Cheng, Fei-Lung Lai, Shing-Chyang Pan, Yuan-Chih Hsieh, Yi-Ren Wang
  • Patent number: 11814283
    Abstract: Various embodiments of the present disclosure are directed towards a microelectromechanical system (MEMS) device. The MEMS device includes a dielectric structure disposed over a first semiconductor substrate, where the dielectric structure at least partially defines a cavity. A second semiconductor substrate is disposed over the dielectric structure. The second semiconductor substrate includes a movable mass, where opposite sidewalls of the movable mass are disposed between opposite sidewall of the cavity. An anti-stiction structure is disposed between the movable mass and the dielectric structure, where the anti-stiction structure is a first silicon-based semiconductor.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: November 14, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuei-Sung Chang, Chun-Wen Cheng, Fei-Lung Lai, Shing-Chyang Pan, Yuan-Chih Hsieh, Yi-Ren Wang
  • Patent number: 11778931
    Abstract: Some embodiments relate to a method for forming an integrated chip. The method includes forming a bottom electrode over a substrate. A data storage layer is formed on the bottom electrode. A diffusion barrier layer is formed over the data storage layer. The diffusion barrier layer has a first diffusion activation temperature. A top electrode is formed over the diffusion barrier layer. The top electrode has a second diffusion activation temperature less than the first diffusion activation temperature.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: October 3, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Albert Zhong, Cheng-Yuan Tsai, Hai-Dang Trinh, Shing-Chyang Pan
  • Patent number: 11769693
    Abstract: A semiconductor structure includes a conductive feature, a first metal-based etch-stop layer over the underlying structure, a metal-free etch-stop layer over the first metal-based etch-stop layer, a second metal-based etch-stop layer over the metal-free etch-stop layer, an interlayer dielectric layer over the second metal-based etch-stop layer, and an interconnect structure extending through the first metal-based etch-stop layer, metal-free etch-stop layer, and the second metal-based etch-stop layer, wherein a bottom portion of the conductive interconnect structure directly contacts the conductive feature. The first metal-based etch-stop layer may include a first metallic component having one of aluminum, tantalum, titanium, or hafnium, and the second metal-based etch-stop layer may include a second metallic component the same as or different from the first metallic component. The first metal-based etch-stop layer and the second metal-based etch-stop layer may both be free of silicon.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: September 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Szu-Ping Tung, Yu-Kai Lin, Jen Hung Wang, Shing-Chyang Pan
  • Publication number: 20230294978
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip including a microelectromechanical systems (MEMS) structure overlying a substrate. A capping structure overlies the MEMS structure. The capping structure at least partially defines a cavity. The MEMS structure is disposed in the cavity. An outgas structure adjacent to the cavity. The outgas structure comprises an amorphous material.
    Type: Application
    Filed: May 25, 2023
    Publication date: September 21, 2023
    Inventors: Yi-Ren Wang, Shing-Chyang Pan, Yuan-Chih Hsieh
  • Publication number: 20230260829
    Abstract: Semiconductor devices and methods of forming semiconductor devices are provided. A method includes forming a first mask layer over an underlying layer, patterning the first mask layer to form a first opening, forming a non-conformal film over the first mask layer, wherein a first thickness of the non-conformal film formed on the top surface of the first mask layer is greater than a second thickness of the non-conformal film formed on a sidewall surface of the first mask layer, performing a descum process, wherein the descum process removes a portion of the non-conformal film within the first opening, and etching the underlying layer using the patterned first mask layer and remaining portions of the non-conformal film as an etching mask.
    Type: Application
    Filed: April 28, 2023
    Publication date: August 17, 2023
    Inventors: Wei-Ren Wang, Shing-Chyang Pan, Ching-Yu Chang, Wan-Lin Tsai, Jung-Hau Shiu, Tze-Liang Lee
  • Patent number: 11697588
    Abstract: Various embodiments of the present disclosure are directed towards a method for manufacturing an integrated chip, the method comprises forming an interconnect structure over a semiconductor substrate. An upper dielectric layer is formed over the interconnect structure. An outgas layer is formed within the upper dielectric layer. The outgas layer comprises a first material that is amorphous. A microelectromechanical systems (MEMS) substrate is formed over the interconnect structure. The MEMS substrate comprises a moveable structure directly over the outgas layer.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: July 11, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Ren Wang, Shing-Chyang Pan, Yuan-Chih Hsieh
  • Patent number: 11676852
    Abstract: Semiconductor devices and methods of forming semiconductor devices are provided. A method includes forming a first mask layer over an underlying layer, patterning the first mask layer to form a first opening, forming a non-conformal film over the first mask layer, wherein a first thickness of the non-conformal film formed on the top surface of the first mask layer is greater than a second thickness of the non-conformal film formed on a sidewall surface of the first mask layer, performing a descum process, wherein the descum process removes a portion of the non-conformal film within the first opening, and etching the underlying layer using the patterned first mask layer and remaining portions of the non-conformal film as an etching mask.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: June 13, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Ren Wang, Shing-Chyang Pan, Ching-Yu Chang, Wan-Lin Tsai, Jung-Hau Shiu, Tze-Liang Lee
  • Patent number: 11651993
    Abstract: A semiconductor device includes a substrate, a first conductive feature over a portion of the substrate, and an etch stop layer over the substrate and the first conductive feature. The etch stop layer includes a silicon-containing dielectric (SCD) layer and a metal-containing dielectric (MCD) layer over the SCD layer. The semiconductor device further includes a dielectric layer over the etch stop layer, and a second conductive feature in the dielectric layer. The second conductive feature penetrates the etch stop layer and electrically connects to the first conductive feature.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: May 16, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Szu-Ping Tung, Jen Hung Wang, Shing-Chyang Pan
  • Publication number: 20230073308
    Abstract: A structure includes a substrate, a transistor, a contact, an oxygen-free etch stop layer, an oxygen-containing etch stop layer, a dielectric layer, and a via. The transistor is on the substrate. The contact is on a source/drain region of the transistor. The oxygen-free etch stop layer spans the contact. The oxygen-containing etch stop layer extends along a top surface of the oxygen-free etch stop layer. The dielectric layer is over the oxygen-containing etch stop layer. The via passes through the dielectric layer, the oxygen-containing etch stop layer, and the oxygen-free etch stop layer and lands on the contact. The memory stack lands on the via.
    Type: Application
    Filed: November 9, 2022
    Publication date: March 9, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO, LTD.
    Inventors: Jung-Tang WU, Szu-Ping TUNG, Szu-Hua WU, Shing-Chyang PAN, Meng-Yu WU
  • Patent number: 11594678
    Abstract: Some embodiments relate to a memory device. The memory device includes a bottom electrode overlying a substrate. A data storage layer overlies the bottom electrode. A top electrode overlies the data storage layer. A conductive bridge is selectively formable within the data storage layer to couple the bottom electrode to the top electrode. A diffusion barrier layer is disposed between the data storage layer and the top electrode.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: February 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Albert Zhong, Cheng-Yuan Tsai, Hai-Dang Trinh, Shing-Chyang Pan
  • Patent number: 11515474
    Abstract: A memory device includes a semiconductor substrate, a first dielectric layer, a metal contact, an aluminum nitride layer, an aluminum oxide layer, a second dielectric layer, a metal via, and a memory stack. The first dielectric layer is over the semiconductor substrate. The metal contact passes through the first dielectric layer. The aluminum nitride layer extends along a top surface of the first dielectric layer and a top surface of the metal contact. The aluminum oxide layer extends along a top surface of the aluminum nitride layer. The second dielectric layer is over the aluminum oxide layer. The metal via passes through the second dielectric layer, the aluminum oxide layer, and the aluminum nitride layer and lands on the metal contact. The memory stack lands on the metal via.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: November 29, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jung-Tang Wu, Szu-Ping Tung, Szu-Hua Wu, Shing-Chyang Pan, Meng-Yu Wu
  • Publication number: 20220367801
    Abstract: Some embodiments relate to a method for forming an integrated chip. The method includes forming a bottom electrode over a substrate. A data storage layer is formed on the bottom electrode. A diffusion barrier layer is formed over the data storage layer. The diffusion barrier layer has a first diffusion activation temperature. A top electrode is formed over the diffusion barrier layer. The top electrode has a second diffusion activation temperature less than the first diffusion activation temperature.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 17, 2022
    Inventors: Albert Zhong, Cheng-Yuan Tsai, Hai-Dang Trinh, Shing-Chyang Pan
  • Publication number: 20220349045
    Abstract: A sputtering system includes a vacuum chamber, a power source having a pole coupled to a backing plate for holding a sputtering target within the vacuum chamber, a pedestal for holding a substrate within the vacuum chamber, and a time of flight camera positioned to scan a surface of a target held to the backing plate. The time of flight camera may be used to obtain information relating to the topography of the target while the target is at sub-atmospheric pressure. The target information may be used to manage operation of the sputtering system. Managing operation of the sputtering system may include setting an adjustable parameter of a deposition process or deciding when to replace a sputtering target. Machine learning may be used to apply the time of flight camera data in managing the sputtering system operation.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 3, 2022
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Shing-Chyang Pan
  • Patent number: 11479849
    Abstract: A sputtering system includes a vacuum chamber, a power source having a pole coupled to a backing plate for holding a sputtering target within the vacuum chamber, a pedestal for holding a substrate within the vacuum chamber, and a time of flight camera positioned to scan a surface of a target held to the backing plate. The time of flight camera may be used to obtain information relating to the topography of the target while the target is at sub-atmospheric pressure. The target information may be used to manage operation of the sputtering system. Managing operation of the sputtering system may include setting an adjustable parameter of a deposition process or deciding when to replace a sputtering target. Machine learning may be used to apply the time of flight camera data in managing the sputtering system operation.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: October 25, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Shing-Chyang Pan
  • Publication number: 20220254680
    Abstract: A semiconductor device includes a substrate, a first conductive feature over a portion of the substrate, and an etch stop layer over the substrate and the first conductive feature. The etch stop layer includes a silicon-containing dielectric (SCD) layer and a metal-containing dielectric (MCD) layer over the SCD layer. The semiconductor device further includes a dielectric layer over the etch stop layer, and a second conductive feature in the dielectric layer. The second conductive feature penetrates the etch stop layer and electrically connects to the first conductive feature.
    Type: Application
    Filed: April 29, 2022
    Publication date: August 11, 2022
    Inventors: Szu-Ping Tung, Jen-Hung Wang, Shing-Chyang Pan
  • Patent number: 11322396
    Abstract: A semiconductor device includes a substrate, a first conductive feature over a portion of the substrate, and an etch stop layer over the substrate and the first conductive feature. The etch stop layer includes a silicon-containing dielectric (SCD) layer and a metal-containing dielectric (MCD) layer over the SCD layer. The semiconductor device further includes a dielectric layer over the etch stop layer, and a second conductive feature in the dielectric layer. The second conductive feature penetrates the etch stop layer and electrically connects to the first conductive feature.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: May 3, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Szu-Ping Tung, Jen Hung Wang, Shing-Chyang Pan
  • Publication number: 20220089434
    Abstract: Various embodiments of the present disclosure are directed towards a method for manufacturing an integrated chip, the method comprises forming an interconnect structure over a semiconductor substrate. An upper dielectric layer is formed over the interconnect structure. An outgas layer is formed within the upper dielectric layer. The outgas layer comprises a first material that is amorphous. A microelectromechanical systems (MEMS) substrate is formed over the interconnect structure. The MEMS substrate comprises a moveable structure directly over the outgas layer.
    Type: Application
    Filed: December 6, 2021
    Publication date: March 24, 2022
    Inventors: Yi-Ren Wang, Shing-Chyang Pan, Yuan-Chih Hsieh
  • Patent number: 11198606
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip including a capping structure over a device substrate. The device substrate includes a first microelectromechanical systems (MEMS) device and a second MEMS device laterally offset from the first MEMS device. The capping structure includes a first cavity overlying the first MEMS device and a second cavity overlying the second MEMS device. The first cavity has a first gas pressure and the second cavity has a second gas pressure different from the first cavity. An outgas layer abutting the first cavity. The outgas layer includes an outgas material having an outgas species. The outgas material is amorphous.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: December 14, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Ren Wang, Shing-Chyang Pan, Yuan-Chih Hsieh