Patents by Inventor Shing-Chyang Pan

Shing-Chyang Pan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9887072
    Abstract: The present disclosure is directed to a material layer deposition system. The material layer deposition system includes a wafer pedestal configured to support at least one wafer within a confinement shield structure and a target carrier structure positioned above the wafer pedestal at an opposite side of the confinement shield structure. The target carrier structure is configured to support a sputtering target. The material layer deposition system further includes a collimator disposed within the confinement shield structure between the wafer pedestal and the target carrier structure, an electrical power source coupled to the collimator to supply electrical power, and a control system configured to control the electrical power source coupled to the collimator.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: February 6, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shing-Chyang Pan, Ching-Hua Hsieh, Ming-Hsing Tsai, Syun-Ming Jang
  • Publication number: 20180033685
    Abstract: A method includes forming a carbon-containing layer with a carbon atomic percentage greater than about 25 percent over a first hard mask layer, forming a capping layer over the carbon-containing layer, forming a first photo resist over the capping layer, and etching the capping layer and the carbon-containing layer using the first photo resist as a first etching mask. The first photo resist is then removed. A second photo resist is formed over the capping layer. The capping layer and the carbon-containing layer are etched using the second photo resist as a second etching mask. The second photo resist is removed. A third photo resist under the carbon-containing layer is etched using the carbon-containing layer as etching mask. A dielectric layer underlying the third photo resist is etched to form via openings using the third photo resist as etching mask. The via openings are filled with a conductive material.
    Type: Application
    Filed: May 16, 2017
    Publication date: February 1, 2018
    Inventors: Chun-Kai Chen, Jung-Hau Shiu, Chia Cheng Chou, Chung-Chi Ko, Tze-Liang Lee, Chih-Hao Chen, Shing-Chyang Pan
  • Publication number: 20180005876
    Abstract: A semiconductor device includes a substrate, a first conductive feature over a portion of the substrate, and an etch stop layer over the substrate and the first conductive feature. The etch stop layer includes a silicon-containing dielectric (SCD) layer and a metal-containing dielectric (MCD) layer over the SCD layer. The semiconductor device further includes a dielectric layer over the etch stop layer, and a second conductive feature in the dielectric layer. The second conductive feature penetrates the etch stop layer and electrically connects to the first conductive feature.
    Type: Application
    Filed: June 29, 2016
    Publication date: January 4, 2018
    Inventors: Szu-Ping Tung, Jen Hung Wang, Shing-Chyang Pan
  • Patent number: 9818638
    Abstract: A method of forming a semiconductor device includes forming a low-k dielectric layer over a substrate and forming a first dielectric layer on the low-k dielectric layer. A first metal hard mask layer is formed on the first dielectric layer, and a second dielectric layer is formed on the first metal hard mask layer. A second metal hard mask layer is formed on the second dielectric layer, and a first trench opening is formed in the second metal hard mask layer and the second dielectric layer exposing the first metal hard mask layer. A first via opening is formed in the exposed first metal hard mask layer in the first trench opening, and the first trench opening and first via opening are extended into the low-k dielectric layer to form a first trench and a first via.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: November 14, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Yun Peng, Chung-Chi Ko, Shing-Chyang Pan
  • Patent number: 9679804
    Abstract: A method includes forming a carbon-containing layer with a carbon atomic percentage greater than about 25 percent over a first hard mask layer, forming a capping layer over the carbon-containing layer, forming a first photo resist over the capping layer, and etching the capping layer and the carbon-containing layer using the first photo resist as a first etching mask. The first photo resist is then removed. A second photo resist is formed over the capping layer. The capping layer and the carbon-containing layer are etched using the second photo resist as a a second etching mask. The second photo resist is removed. A third photo resist under the carbon-containing layer is etched using the carbon-containing layer as etching mask. A dielectric layer underlying the third photo resist is etched to form via openings using the third photo resist as etching mask. The via openings are filled with a conductive material.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: June 13, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Kai Chen, Jung-Hau Shiu, Chia Cheng Chou, Chung-Chi Ko, Tze-Liang Lee, Chih-Hao Chen, Shing-Chyang Pan
  • Patent number: 9659811
    Abstract: A method of forming a semiconductor device includes forming a low-k dielectric layer over a substrate and forming a first dielectric layer on the low-k dielectric layer. A first metal hard mask layer is formed on the first dielectric layer, and a second dielectric layer is formed on the first metal hard mask layer. A second metal hard mask layer is formed on the second dielectric layer, and a first trench opening is formed in the second metal hard mask layer and the second dielectric layer exposing the first metal hard mask layer. A first via opening is formed in the exposed first metal hard mask layer in the first trench opening, and the first trench opening and first via opening are extended into the low-k dielectric layer to form a first trench and a first via.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: May 23, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Yun Peng, Chung-Chi Ko, Shing-Chyang Pan
  • Patent number: 9567668
    Abstract: Embodiments of a plasma apparatus are provided. The plasma apparatus includes a processing chamber and a wafer chuck disposed in the processing chamber. The plasma apparatus also includes a target element located over the wafer chuck and an electromagnet array located over the target element and having a number of electromagnets. Some of the electromagnets in a magnetic-field zone of the electromagnet array are enabled to generate a magnetic field adjacent to the target element. The magnetic-field zone is moved during a semiconductor manufacturing process.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: February 14, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Chien Chi, Shing-Chyang Pan, Kuan-Chia Chen, Yao-Jen Chang, Huang-Yi Huang, Ching-Hua Hsieh
  • Patent number: 9472449
    Abstract: A method of fabricating a semiconductor structure includes forming a dielectric layer overlaying a substrate; forming a trench in the dielectric layer; forming a first barrier layer lining the trench; forming a conductive layer overlaying the first barrier layer; forming a second barrier layer overlaying the conductive layer; forming a metallic sacrificial layer to cover the second barrier layer and to fill the trench; and performing a polishing process to remove the materials above a bottom portion of the second barrier layer.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: October 18, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuan-Chia Chen, Shing-Chyang Pan, Chih-Chien Chi, Ching-Hua Hsieh
  • Patent number: 9385086
    Abstract: A robust metallization profile is formed by forming two or more layers of hard mask with different density. Multi-layer metal hard mask is helpful especially in small feature size process, for example, 50 nm and below. Lower layers have higher density. In such ways, enough process window is offered by lower layers and at the same time, round hard mask profile is offered by upper layers.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: July 5, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shing-Chyang Pan, Ching-Hua Hsieh, Hong-Hui Hsu
  • Patent number: 9330915
    Abstract: A robust metallization profile is formed by pre-treat an anti-reflective coating layer by plasma before forming a hard mask layer. Pre-treatment is helpful especially in small feature size process, for example, 50 nm and below. By changing constitution of a surface layer of the anti-reflective coating, interface of the anti-reflective coating layer and the hard mask layer is smoothed which results in less overhang and better gap-filling performance.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: May 3, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shing-Chyang Pan, Ching-Hua Hsieh, Hong-Hui Hsu, Yao-Jen Chang
  • Publication number: 20150235823
    Abstract: Embodiments of a plasma apparatus are provided. The plasma apparatus includes a processing chamber and a wafer chuck disposed in the processing chamber. The plasma apparatus also includes a target element located over the wafer chuck and an electromagnet array located over the target element and having a number of electromagnets. Some of the electromagnets in a magnetic-field zone of the electromagnet array are enabled to generate a magnetic field adjacent to the target element. The magnetic-field zone is moved during a semiconductor manufacturing process.
    Type: Application
    Filed: February 19, 2014
    Publication date: August 20, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Chien CHI, Shing-Chyang PAN, Kuan-Chia CHEN, Yao-Jen CHANG, Huang-Yi HUANG, Ching-Hua HSIEH
  • Publication number: 20150206724
    Abstract: The present disclosure is directed to a material layer deposition system. The material layer deposition system includes a wafer pedestal configured to support at least one wafer within a confinement shield structure and a target carrier structure positioned above the wafer pedestal at an opposite side of the confinement shield structure. The target carrier structure is configured to support a sputtering target. The material layer deposition system further includes a collimator disposed within the confinement shield structure between the wafer pedestal and the target carrier structure, an electrical power source coupled to the collimator to supply electrical power, and a control system configured to control the electrical power source coupled to the collimator.
    Type: Application
    Filed: January 23, 2014
    Publication date: July 23, 2015
    Inventors: Shing-Chyang Pan, Ching-Hua Hsieh, Minghsing Tsai, Syun-Ming Jang
  • Publication number: 20150200126
    Abstract: A method of fabricating a semiconductor structure includes forming a dielectric layer overlaying a substrate; forming a trench in the dielectric layer; forming a first barrier layer lining the trench; forming a conductive layer overlaying the first barrier layer; forming a second barrier layer overlaying the conductive layer; forming a metallic sacrificial layer to cover the second barrier layer and to fill the trench; and performing a polishing process to remove the materials above a bottom portion of the second barrier layer.
    Type: Application
    Filed: January 15, 2014
    Publication date: July 16, 2015
    Applicant: Taiwan Semiconductor Manufacturing CO., LTD.
    Inventors: Kuan-Chia Chen, Shing-Chyang Pan, Chih-Chien Chi, Ching-Hua Hsieh
  • Publication number: 20150162282
    Abstract: A robust metallization profile is formed by forming two or more layers of hard mask with different density. Multi-layer metal hard mask is helpful especially in small feature size process, for example, 50 nm and below. Lower layers have higher density. In such ways, enough process window is offered by lower layers and at the same time, round hard mask profile is offered by upper layers.
    Type: Application
    Filed: December 10, 2013
    Publication date: June 11, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shing-Chyang Pan, Ching-Hua Hsieh, Hong-Hui Hsu
  • Publication number: 20150162280
    Abstract: A robust metallization profile is formed by pre-treat an anti-reflective coating layer by plasma before forming a hard mask layer. Pre-treatment is helpful especially in small feature size process, for example, 50 nm and below. By changing constitution of a surface layer of the anti-reflective coating, interface of the anti-reflective coating layer and the hard mask layer is smoothed which results in less overhang and better gap-filling performance.
    Type: Application
    Filed: December 10, 2013
    Publication date: June 11, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shing-Chyang Pan, Ching-Hua Hsieh, Hong-Hui Hsu, Yao-Jen Chang
  • Publication number: 20130062774
    Abstract: A method includes forming a metal hard mask over a low-k dielectric layer. The step of forming the metal hard mask includes depositing a sub-layer of the metal hard mask, and performing a plasma treatment on the sub-layer of the metal hard mask. The metal hard mask is patterned to form an opening. The low-k dielectric layer is etched to form a trench, wherein the step of etching is performed using the metal hard mask as an etching mask.
    Type: Application
    Filed: September 8, 2011
    Publication date: March 14, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Chi Ko, Chia-Cheng Chou, Shing-Chyang Pan, Keng-Chu Lin, Shwang-Ming Jeng
  • Patent number: 8361900
    Abstract: A copper interconnect includes a copper layer formed in a dielectric layer. A liner is formed between the copper layer and the dielectric layer. A barrier layer is formed at the boundary between the liner and the dielectric layer. The barrier layer is a metal oxide.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: January 29, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shing-Chyang Pan, Han-Hsin Kuo, Chung-Chi Ko, Ching-Hua Hsieh
  • Patent number: 8252690
    Abstract: A method of forming a seed layer of an interconnect structure includes forming a dielectric layer; forming an opening in the dielectric layer; performing a first deposition step to form the seed layer; and in-situ performing a first etch step to remove a portion of the seed layer. The method may further includes additional deposition and etch steps for forming the seed layer.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: August 28, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Lin Su, Cheng-Lin Huang, Shing-Chyang Pan, Ching-Hua Hsieh
  • Publication number: 20110256715
    Abstract: A copper interconnect includes a copper layer formed in a dielectric layer. A liner is formed between the copper layer and the dielectric layer. A barrier layer is formed at the boundary between the liner and the dielectric layer. The barrier layer is a metal oxide.
    Type: Application
    Filed: April 16, 2010
    Publication date: October 20, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shing-Chyang PAN, Han-Hsin KUO, Chung-Chi KO, Ching-Hua HSIEH
  • Patent number: 8034709
    Abstract: Provided is a method for forming a composite barrier layer with superior barrier qualities and superior adhesion properties to both dielectric materials and conductive materials as the composite barrier layer extends throughout the semiconductor device. The composite barrier layer may be formed in regions where it is disposed between two conductive layers and in regions where it is disposed between a conductive layer and a dielectric material. The composite barrier layer may consist of various pluralities of layers and the arrangement of layers that form the composite barrier layer may differ as the barrier layer extends throughout different sections of the device. Amorphous layers of the composite barrier layer generally form boundaries with dielectric materials and crystalline layers generally form boundaries with conductive materials such as interconnect materials.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: October 11, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Lin Huang, Ching-Hua Hsieh, Hsien-Ming Lee, Shing-Chyang Pan, Chao-Hsien Peng, Li-Lin Su, Jing-Cheng Lin, Shao-Lin Shue, Mong-Song Liang