Patents by Inventor Shinichiro Kimura

Shinichiro Kimura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050045933
    Abstract: A capacitor consisting of a storage electrode (19), a capacitor dielectric film (20) and a plate electrode (21) is formed in a trench formed through dielectric films (6, 8, 10 and 12) stacked on a semiconductor substrate (1) and buried wiring layers (9 and 11) are formed under the capacitor. As the capacitor is formed not in the semiconductor substrate but over it, there is room in area in which the capacitor can be formed and the difficultly of forming wiring is reduced by using the wiring layers (9 and 11) for a global word line and a selector line. As the upper face of an dielectric film (32) which is in contact with the lower face of wiring (34) in a peripheral circuit area is extended into a memory cell area and is in contact with the side of the capacitor (33), step height between the peripheral circuit area and the memory cell area is remarkably reduced.
    Type: Application
    Filed: August 10, 2004
    Publication date: March 3, 2005
    Inventors: Shinichiro Kimura, Toshiaki Yamanaka, Kiyoo Itoh, Takeshi Sakata, Tomonori Sekiguchi, Hideyuki Matsuoka
  • Publication number: 20050035428
    Abstract: A semiconductor integrated circuit device is provided, in which variation in the threshold voltage of a MISFET, for example, a MISFET pair that constitute a sense amplifier, can be reduced. In a logic circuit area over which a logic circuit such as a sense amplifier circuit required to drive a memory cell is formed, n-type active areas having no gate electrode are arranged at both edges of active areas over which a p-channel MISFET pair for constituting a sense amplifier are formed. Assuming that the width between active areas nwp1 and nw1 is L4, the width between active areas nwp2 and nw2 is L6, and the width between active areas nwp1 and nwp2 is L5, (L4-L5), (L6-L5), and (L4-L6) are set equal to almost zero or smaller than twice the minimum processing dimension, so that the variation in shape of the device isolation trenches with the widths L4, L5, and L6 can be reduced, and the threshold voltage difference in the MISFET pair can be reduced.
    Type: Application
    Filed: September 22, 2004
    Publication date: February 17, 2005
    Inventors: Norikatsu Takaura, Riichiro Takemura, Hideyuki Matsuoka, Shinichiro Kimura, Hisao Asakura, Ryo Nagai, Satoru Yamada
  • Patent number: 6831316
    Abstract: An existent DRAM memory cell comprises transistors as a switch and capacitors for accumulating storage charges in which the height of the capacitor has been increased more and more along with micro miniaturization, which directly leads to increase in the manufacturing cost. The invention of the present application provides a semiconductor memory device of a basic constitution in which a memory cell array having plural memory cells disposed on a semiconductor substrate and word lines and data lines for selecting the memory cells and a peripheral circuit at the periphery of the memory cell array wherein the memory cell comprises a multi-layer of a conductive layer, an insulating layer and plural semiconductor layers containing impurities, and a potential can be applied to the insulating layer enabling the tunneling effect. The invention of the present application concerns a memory cell not requiring capacitor and capable of being formed in simple steps.
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: December 14, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Hideyuki Matsuoka, Takeshi Sakata, Shinichiro Kimura, Toshiaki Yamanaka, Tsuyoshi Kachi, Tomonori Sekiguchi
  • Publication number: 20040224476
    Abstract: A reduction of the junction electric field intensity is accomplished in the semiconductor regions for the sources and drains of field effects transistors. For this purpose, a structure is provided where the gate electrodes 9 of the MIS·FETQs for memory cell selection of a DRAM are buried within the trenches 7a and 7b created in the semiconductor substrate 1. The bottom corners within the trench 7b are rounded so as to have a radius of curvature in accordance with the sub-threshold coefficient of the MIS·FETQs for memory cell selection. In addition, the gate insulating film 8 within the trench 7b is made to have a laminated structure of a thermal oxide film and a CVD film.
    Type: Application
    Filed: June 14, 2004
    Publication date: November 11, 2004
    Inventors: Satoru Yamada, Kiyonori Oyu, Shinichiro Kimura
  • Patent number: 6812540
    Abstract: A semiconductor integrated circuit device is provided, in which variation in the threshold voltage of a MISFET, for example, a MISFET pair that constitute a sense amplifier, can be reduced. In a logic circuit area over which a logic circuit such as a sense amplifier circuit required to drive a memory cell is formed, n-type active areas having no gate electrode are arranged at both edges of active areas over which a p-channel MISFET pair for constituting a sense amplifier are formed. Assuming that the width between active areas nwp1 and nw1 is L4, the width between active areas nwp2 and nw2 is L6, and the width between active areas nwp1 and nwp2 is L5, (L4−L5), (L6−L5), and (L4−L6) are set equal to almost zero or smaller than twice the minimum processing dimension, so that the variation in shape of the device isolation trenches with the widths L4, L5, and L6 can be reduced, and the threshold voltage difference in the MISFET pair can be reduced.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: November 2, 2004
    Assignees: Hitachi, Ltd., Elpida Memory, Inc.
    Inventors: Norikatsu Takaura, Riichiro Takemura, Hideyuki Matsuoka, Shinichiro Kimura, Hisao Asakura, Ryo Nagai, Satoru Yamada
  • Publication number: 20040198002
    Abstract: This semiconductor device manufacturing method comprises the steps of: forming a thick gate oxide film (thick oxide film) in a first region of a substrate, forming a thin gate oxide film (thin oxide layer) in a second region, and then, applying oxynitridation to these gate oxide films; forming gate electrodes to 1d on these gate oxide films; and implanting an ion that contains nitrogen or nitrogen atoms into at least one part of an interface between the hick gate oxide film (thick oxide film) and the substrate before or after the step of forming the gate electrodes, thereby forming a highly oxy-nitrided region. In this manner, in a semiconductor device in which there coexist a MISFET having a thin gate insulation film and a MISFET having a thick gate insulation film, hot carrier reliability of the MISFET having the thick gate insulation film is improved.
    Type: Application
    Filed: February 11, 2004
    Publication date: October 7, 2004
    Applicant: Hitachi, Ltd.
    Inventors: Eiichi Murakami, Akio Nishida, Kazunori Umeda, Kousuke Okuyama, Toshiaki Yamanaka, Jiro Yugami, Shinichiro Kimura
  • Patent number: 6798005
    Abstract: A capacitor consisting of a storage electrode (19), a capacitor dielectric film (20) and a plate electrode (21) is formed in a trench formed through dielectric films (6, 8, 10 and 12) stacked on a semiconductor substrate (1) and buried wiring layers (9 and 11) are formed under the capacitor. As the capacitor is formed not in the semiconductor substrate but over it, there is room in area in which the capacitor can be formed and the difficulty of forming wiring is reduced by using the wiring layers (9 and 11) for a global word line and a selector line. As the upper face of an dielectric film (32) which is in contact with the lower face of wiring (34) in a peripheral circuit area is extended into a memory cell area and is in contact with the side of the capacitor (33), step height between the peripheral circuit area and the memory cell area is remarkably reduced.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: September 28, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Shinichiro Kimura, Toshiaki Yamanaka, Kiyoo Itoh, Takeshi Sakata, Tomonori Sekiguchi, Hideyuki Matsuoka
  • Patent number: 6791134
    Abstract: A capacitor consisting of a storage electrode (19), a capacitor dielectric film (20) and a plate electrode (21) is formed in a trench formed through dielectric films (6, 8, 10 and 12) stacked on a semiconductor substrate (1) and buried wiring layers (9 and 11) are formed under the capacitor. As the capacitor is formed not in the semiconductor substrate but over it, there is room in area in which the capacitor can be formed and the difficulty of forming wiring is reduced by using the wiring layers (9 and 11) for a global word line and a selector line. As the upper face of an dielectric film (32) which is in contact with the lower face of wiring (34) in a peripheral circuit area is extended into a memory cell area and is in contact with the side of the capacitor (33), step height between the peripheral circuit area and the memory cell area is remarkably reduced.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: September 14, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Shinichiro Kimura, Toshiaki Yamanaka, Kiyoo Itoh, Takeshi Sakata, Tomonori Sekiguchi, Hideyuki Matsuoka
  • Patent number: 6770535
    Abstract: A reduction of the junction electric field intensity is accomplished in the semiconductor regions for the sources and drains of field effects transistors. For this purpose, a structure is provided where the gate electrodes 9 of the MIS.FETQs for memory cell selection of a DRAM are buried within the trenches 7a and 7b created in the semiconductor substrate 1. The bottom corners within the trench 7b are rounded so as to have a radius of curvature in accordance with the sub-threshold coefficient of the MIS.FETQs for memory cell selection. In addition, the gate insulating film 8 within the trench 7b is made to have a laminated structure of a thermal oxide film and a CVD film.
    Type: Grant
    Filed: January 24, 2001
    Date of Patent: August 3, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Satoru Yamada, Kiyonori Oyu, Shinichiro Kimura
  • Publication number: 20040119107
    Abstract: A non-volatile semiconductor memory device with good write/erase characteristics is provided. A selection gate is formed on a p-type well of a semiconductor substrate via a gate insulator, and a memory gate is formed on the p-type well via a laminated film composed of a silicon oxide film, a silicon nitride film, and a silicon oxide film. The memory gate is adjacent to the selection gate via the laminated film. In the regions on the both sides of the selection gate and the memory gate in the p-type well, n-type impurity diffusion layers serving as the source and drain are formed. The region controlled by the selection gate and the region controlled by the memory gate located in the channel region between said impurity diffusion layers have the different charge densities of the impurity from each other.
    Type: Application
    Filed: December 4, 2003
    Publication date: June 24, 2004
    Inventors: Digh Hisamoto, Shinichiro Kimura, Kan Yasui, Nozomu Matsuzaki
  • Publication number: 20040104416
    Abstract: A refresh characteristic of a DRAM memory cell is improved and the performance of a MISFET formed in the periphery thereof and constituting a logic circuit is improved.
    Type: Application
    Filed: July 10, 2003
    Publication date: June 3, 2004
    Applicants: Hitachi, Ltd., NEC Electronics Corporation, NEC Corporation
    Inventors: Norikatsu Takaura, Hideyuki Matsuoka, Shinichiro Kimura, Ryo Nagai, Satoru Yamada
  • Patent number: 6727146
    Abstract: This semiconductor device manufacturing method comprises the steps of: forming a thick gate oxide film (thick oxide film) in a first region of a substrate, forming a thin gate oxide film (thin oxide layer) in a second region, and then, applying oxynitridation to these gate oxide films; forming gate electrodes to 1d on these gate oxide films; and implanting an ion that contains nitrogen or nitrogen atoms into at least one part of an interface between the hick gate oxide film (thick oxide film) and the substrate before or after the step of forming the gate electrodes, thereby forming a highly oxy-nitrided region. In this manner, in a semiconductor device in which there coexist a MISFET having a thin gate insulation film and a MISFET having a thick gate insulation film, hot carrier reliability of the MISFET having the thick gate insulation film is improved.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: April 27, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Eiichi Murakami, Akio Nishida, Kazunori Umeda, Kousuke Okuyama, Toshiaki Yamanaka, Jiro Yugami, Shinichiro Kimura
  • Publication number: 20040047201
    Abstract: According to the present invention, an overlay margin is secured for matching a wiring electrode 11 with a storage electrode 15 of a capacitor at their point of contact and the required area for a memory cell can be decreased by placing the plug electrode 11 of titanium nitride in the active region of a semiconductor substrate or over the gate electrode, reducing the size of the opening for passing the storage electrode 15 of the capacitor of a stacked structure, and decreasing the line width of a wiring electrode 13. By the common use of the above-mentioned plug electrodes in a CMISFET region in the peripheral circuit and in a memory cell of a static RAM, their circuit layouts can be made compact.
    Type: Application
    Filed: September 12, 2003
    Publication date: March 11, 2004
    Applicant: Hitachi, Ltd.
    Inventors: Toshiaki Yamanaka, Shinichiro Kimura, Hideyuki Matsuoka, Tomonori Sekiguchi, Takeshi Sakata, Kiyoo Itoh
  • Patent number: 6677194
    Abstract: A low threshold voltage NMIS area and a high threshold voltage PMIS area are set by a photoresist mask also used for well formation. Using a photoresist mask with openings for the NMIS and PMIS, the NMIS and PMIS areas are set by one ion implantation step. After gate oxidation, ion implantation is conducted through an amorphous silicon film onto wells, channels, and gate electrodes. A plurality of CMIS threshold voltages can be set and the gate electrodes of both polarities can be formed in a reduced number of steps using photoresist. This solves the problem in which photomasks are required as many as there are ion implantation types for wells, channel stoppers, gate electrodes, and threshold voltage control and hence the number of manufacturing steps and the production cost are increased.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: January 13, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Toshiaki Yamanaka, Akio Nishida, Yasuko Yoshida, Shuji Ikeda, Kenichi Kuroda, Shiro Kamohara, Shinichiro Kimura, Eiichi Murakami, Hideyuki Matsuoka, Masataka Minami
  • Publication number: 20030205751
    Abstract: A semiconductor memory device having STC cells wherein the major portions of active regions consisting of channel-forming portions are inclined at an angle of 45 degrees with respect to word lines and bit lines that meet at right angles with each other, thereby enabling the storage capacity portions to be arranged very densely and a sufficiently large capacity to be maintained with very small cell areas. Since the storage capacity portions are formed even on the bit lines, the bit lines are shielded, so that the capacity decreases between the bit lines and, hence, the memory array noise decreases. It is also possible to design the charge storage capacity portion so that a part of thereof has a form of a wall substantially vertical to the substrate in order to increase the capacity.
    Type: Application
    Filed: June 11, 2003
    Publication date: November 6, 2003
    Applicant: Hitachi, Ltd.
    Inventors: Shinichiro Kimura, Naotaka Hashimoto, Yoshio Sakai, Tokuo Kure, Yoshifumi Kawamoto, Toru Kaga, Eiji Takeda
  • Publication number: 20030201485
    Abstract: By using a solid solution of tantalum pentoxide and niobium pentoxide as a dielectric film installed between upper electrode and lower electrode in a capacitor which is used in a semiconductor device, the capacitor structure can be simplified to improve reliability of the semiconductor device while reducing the production cost thereof.
    Type: Application
    Filed: April 24, 2003
    Publication date: October 30, 2003
    Applicant: Hitachi, Ltd.
    Inventors: Masahiko Hiratani, Shinichiro Kimura, Tomoyuki Hamada
  • Patent number: 6617205
    Abstract: A capacitor consisting of a storage electrode (19), a capacitor dielectric film (20) and a plate electrode (21) is formed in a trench formed through dielectric films (6, 8, 10 and 12) stacked on a semiconductor substrate (1) and buried wiring layers (9 and 11) are formed under the capacitor. As the capacitor is formed not in the semiconductor substrate but over it, there is room in area in which the capacitor can be formed and the difficulty of forming wiring is reduced by using the wiring layers (9 and 11) for a global word line and a selector line. As the upper face of an dielectric film (32) which is in contact with the lower face of wiring (34) in a peripheral circuit area is extended into a memory cell area and is in contact with the side of the capacitor (33), step height between the peripheral circuit area and the memory cell area is remarkably reduced.
    Type: Grant
    Filed: May 20, 1998
    Date of Patent: September 9, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Shinichiro Kimura, Toshiaki Yamanaka, Kiyoo Itoh, Takeshi Sakata, Tomonori Sekiguchi, Hideyuki Matsuoka
  • Publication number: 20030111707
    Abstract: A semiconductor integrated circuit device is provided, in which variation in the threshold voltage of a MISFET, for example, a MISFET pair that constitute a sense amplifier, can be reduced. In a logic circuit area over which a logic circuit such as a sense amplifier circuit required to drive a memory cell is formed, n-type active areas having no gate electrode are arranged at both edges of active areas over which a p-channel MISFET pair for constituting a sense amplifier are formed. Assuming that the width between active areas nwp1 and nw1 is L4, the width between active areas nwp2 and nw2 is L6, and the width between active areas nwp1 and nwp2 is L5, (L4-L5), (L6-L5), and (L4-L6) are set equal to almost zero or smaller than twice the minimum processing dimension, so that the variation in shape of the device isolation trenches with the widths L4, L5, and L6 can be reduced, and the threshold voltage difference in the MISFET pair can be reduced.
    Type: Application
    Filed: November 19, 2002
    Publication date: June 19, 2003
    Applicant: Hitachi, Ltd.
    Inventors: Norikatsu Takaura, Riichiro Takemura, Hideyuki Matsuoka, Shinichiro Kimura, Hisao Asakura, Ryo Nagai, Satoru Yamada
  • Patent number: 6576928
    Abstract: By using a solid solution of tantalum pentoxide and niobium pentoxide as a dielectric film installed between upper electrode and lower electrode in a capacitor which is used in a semiconductor device, the capacitor structure can be simplified to improve reliability of the semiconductor device while reducing the production cost thereof.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: June 10, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Masahiko Hiratani, Shinichiro Kimura, Tomoyuki Hamada
  • Patent number: 6538945
    Abstract: Providing a semiconductor device which lessen influence of the transistor threshold voltage deviation that is one of noise elements when the sense amplifiers are amplified, and which are capable of accurately sensing and amplifying micro signals having read from the memory cells in the sense amplifiers. In a DRAM chip, P+-type gate PMOSs of P+-type polysilicon gates each having a low impurity density of channel and N+-type gate NMOSs of N+-type polysilicon gates are used in a sense amplifier cross coupling section to further increase substrate voltages of the PMOSs and to decrease substrate voltages of the NMOS. For this reason, a deviation of threshold voltage caused by channel implantation is reduced, and a small signal generated on a data line at a read operation of a low-potential memory array is accurately sensed and amplified by a sense amplifier.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: March 25, 2003
    Assignees: Hitachi, Ltd., NEC Corporation
    Inventors: Riichiro Takemura, Tsugio Takahashi, Masayuki Nakamura, Ryo Nagai, Norikatsu Takaura, Tomonori Sekiguchi, Shinichiro Kimura