Patents by Inventor Shogo Yamazoe

Shogo Yamazoe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7777881
    Abstract: A laser device is equipped with an exciting optical system having a GaN semiconductor laser and a condensing lens; and a resonator having of a dichroic mirror and an output mirror, and a solid laser medium is disposed within the resonator. The solid laser medium is disposed in the resonator such that the c axis of a crystal is parallel to the x axis. The exciting optical system is disposed such that the direction in which excitation light emitted from the GaN semiconductor laser is polarized is parallel to the y axis, and is formed so as to absorb excitation light in the crystal axis perpendicular to the c axis. The direction in which the oscillation light emitted from the solid laser medium is polarized coincides with a direction parallel to the c-axis direction, and also coincides with a direction along the x axis.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: August 17, 2010
    Assignee: FUJIFILM Corporation
    Inventor: Shogo Yamazoe
  • Publication number: 20100103961
    Abstract: There is provided a mode-locked laser device including: a resonator; a solid-state laser medium that is disposed in the resonator and outputs oscillation light in accordance with the incidence of excitation light; a saturable absorber that is disposed in the resonator and induces soliton mode-locking; a group velocity dispersion correction component that is disposed in the resonator and controls group velocity dispersion in the resonator; and an excitation portion that causes excitation light to be incident at the solid-state laser medium, wherein a resonator length of the resonator is at least a resonator length with which soliton mode-locking is inducible and is less than a resonator length with which non-soliton mode-locking is inducible.
    Type: Application
    Filed: October 22, 2009
    Publication date: April 29, 2010
    Applicant: FUJIFILM CORPORATION
    Inventor: Shogo YAMAZOE
  • Publication number: 20100103960
    Abstract: There is provided a mode locked laser device including: a cavity, the cavity having a semiconductor saturable absorbing mirror and a negative dispersion mirror that controls group velocity dispersion within the cavity, disposed in a straight line; a solid-state laser medium, disposed in the cavity and outputting oscillating light due to excitation light being incident thereon; an excitation unit that causes the excitation light to be incident on the solid-state laser medium; and a cavity holder, the light incident face of the semiconductor saturable absorbing mirror attached to one end of the cavity holder, the negative dispersion mirror attached to the other end of the cavity holder, and the cavity holder integrally supporting the semiconductor saturable absorbing mirror and the negative dispersion mirror.
    Type: Application
    Filed: October 20, 2009
    Publication date: April 29, 2010
    Applicant: FUJIFILM CORPORATION
    Inventors: Tadashi KASAMATSU, Shogo YAMAZOE, Yutaka KOROGI
  • Patent number: 7693192
    Abstract: A mode-locked laser device includes a Fabry-Perot resonator, a mode-locking element disposed within the resonator, a solid-state laser medium disposed within the resonator, and exciting means for applying excitation light to the solid-state laser medium. The opposite ends of the resonator, the mode-locking element and the solid-state laser medium are disposed to provide an average beam diameter of lasing light of not more than 150 ?m on the mode-locking element and an average beam diameter of the lasing light of not more than 200 ?m within the solid-state laser medium.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: April 6, 2010
    Assignee: FUJIFILM Corporation
    Inventors: Takashi Adachi, Shogo Yamazoe
  • Publication number: 20100038558
    Abstract: There is provided a mode-locked laser including: a resonator having a pair of resonance mirrors; a solid-state laser medium, disposed in the resonator and outputting oscillating light due to excitation light being incident thereon; an excitation unit that causes the excitation light to be incident on the solid-state laser medium; a mode-locked element, disposed in the resonator for inducing mode locking; and a temperature adjusting unit that adjusts the temperature of the pair of resonance mirrors such that oscillating light of a specific frequency is output from the resonator.
    Type: Application
    Filed: July 22, 2009
    Publication date: February 18, 2010
    Applicant: FUJIFILM CORPORATION
    Inventor: Shogo Yamazoe
  • Publication number: 20090316737
    Abstract: In a mode-locked laser-diode-excited laser apparatus: a solid-state laser medium is arranged at a distance of at most twice the Rayleigh range from a saturable absorbing mirror with a depth of absorbing modulation of at least 0.4%; the total intracavity dispersion is smaller than zero and makes oscillating light have such a pulse bandwidth that the saturable absorbing mirror can suppress a background pulses other than soliton pulses repeated with a fundamental repetition period, and the magnitude of the total intracavity dispersion has a predetermined relationship with a pulse width of the oscillating light; and an output mirror is a negative-dispersion mirror in which high-index layers and low-index layers, having optical thicknesses randomly varying in the range of one-eighth to half of the predetermined wavelength, are alternately laminated, and the negative-dispersion mirror causes a mirror dispersion of ?1000 fsec2 to ?100 fsec2 and realizes a reflectance of 97% to 99.5%.
    Type: Application
    Filed: June 22, 2009
    Publication date: December 24, 2009
    Applicant: FUJIFILM Corporation
    Inventors: Tadashi Kasamatsu, Shogo Yamazoe, Makio Usui
  • Publication number: 20090316736
    Abstract: In a mode-locked laser-diode-excited laser apparatus: a solid-state laser medium is arranged at a distance of at most twice the Rayleigh range from a saturable absorbing mirror with a depth of absorbing modulation of at least 0.4%; the total intracavity dispersion is smaller than zero and makes oscillating light have such a pulse bandwidth that the saturable absorbing mirror can suppress a background pulses other than soliton pulses repeated with a fundamental repetition period, and the magnitude of the total intracavity dispersion has a predetermined relationship with a pulse width of the oscillating light; and an output mirror is a negative-dispersion mirror being constituted by two multilayer mirrors and a cavity layer sandwiched between the two multilayer mirrors, and causing a mirror dispersion of ?3000 fsec2 to ?600 fsec2 and realizes a reflectance of 97% to 99.5%.
    Type: Application
    Filed: June 19, 2009
    Publication date: December 24, 2009
    Applicant: FUJIFILM Corporation
    Inventors: Tadashi KASAMATSU, Shogo YAMAZOE, Makio USUI
  • Publication number: 20090316735
    Abstract: In a mode-locked laser-diode-excited laser apparatus: a solid-state laser medium is arranged at a distance of at most twice the Rayleigh range from a saturable absorbing mirror with a depth of absorbing modulation of at least 0.4%; the total intracavity dispersion is smaller than zero and makes oscillating light have such a pulse bandwidth that the saturable absorbing mirror can suppress a background pulses other than soliton pulses repeated with a fundamental repetition period, and the magnitude of the total intracavity dispersion has a predetermined relationship with a pulse width of the oscillating light; and an output mirror is a negative-dispersion mirror being constituted by three or more multilayer mirrors and cavity layers arranged at predetermined intervals between the three or more multilayer mirrors, and causing a mirror dispersion of ?3000 fsec2 to ?600 fsec2 and realizes a reflectance of 97% to 99.5%.
    Type: Application
    Filed: June 19, 2009
    Publication date: December 24, 2009
    Applicant: FUJIFILM Corporation
    Inventors: Tadashi Kasamatsu, Shogo Yamazoe, Makio Usui
  • Publication number: 20090237661
    Abstract: A laser device is equipped with an exciting optical system having a GaN semiconductor laser and a condensing lens; and a resonator having of a dichroic mirror and an output mirror, and a solid laser medium is disposed within the resonator. The solid laser medium is disposed in the resonator such that the c axis of a crystal is parallel to the x axis. The exciting optical system is disposed such that the direction in which excitation light emitted from the GaN semiconductor laser is polarized is parallel to the y axis, and is formed so as to absorb excitation light in the crystal axis perpendicular to the c axis. The direction in which the oscillation light emitted from the solid laser medium is polarized coincides with a direction parallel to the c-axis direction, and also coincides with a direction along the x axis.
    Type: Application
    Filed: March 11, 2009
    Publication date: September 24, 2009
    Applicant: FUJIFILM CORPORATION
    Inventor: Shogo YAMAZOE
  • Patent number: 7526004
    Abstract: A mode-locked laser apparatus includes a resonator (laser cavity), a mode-locking device placed in the resonator, a solid-stated laser medium that is doped with Yb (ytterbium) and placed in the resonator and an excitation means for causing excitation light to enter the solid-state laser medium. In the mode-locked laser apparatus, light with an oscillation wavelength in a wavelength band on the longer wavelength side of the maximum peak wavelength in a fluorescence spectrum of the solid-state laser medium is used as output light.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: April 28, 2009
    Assignee: FUJIFILM Corporation
    Inventors: Shogo Yamazoe, Takashi Adachi
  • Publication number: 20090086771
    Abstract: In a mirror including a substrate and a dielectric multilayer coating structure formed on the substrate, the multilayer coating structure includes two mirror-function layer portions, each formed by a plurality of Layers deposited one on another, and a cavity layer that is arranged between the two mirror-function layer portions, and which causes light having a predetermined wavelength to resonate between the two mirror-function layer portions. Further, a dispersion value with respect to the light having the predetermined wavelength is in the range of ?600 fs2 to ?3000 fs2 and a reflectance with respect to the light having the predetermined wavelength is in the range of 97% to 99.5%.
    Type: Application
    Filed: September 26, 2008
    Publication date: April 2, 2009
    Inventors: Makio USUI, Tadashi Kasamatsu, Shogo Yamazoe
  • Publication number: 20090080474
    Abstract: A mode-locked laser apparatus includes a resonator (laser cavity), a mode-locking device placed in the resonator, a solid-stated laser medium that is doped with Yb (ytterbium) and placed in the resonator and an excitation means for causing excitation light to enter the solid-state laser medium. In the mode-locked laser apparatus, light with an oscillation wavelength in a wavelength band on the longer wavelength side of the maximum peak wavelength in a fluorescence spectrum of the solid-state laser medium is used as output light.
    Type: Application
    Filed: October 4, 2006
    Publication date: March 26, 2009
    Inventors: Shogo Yamazoe, Takashi Adachi
  • Publication number: 20080317073
    Abstract: A mode-locked laser device includes a Fabry-Perot resonator, a mode-locking element disposed within the resonator, a solid-state laser medium disposed within the resonator, and exciting means for applying excitation light to the solid-state laser medium. The opposite ends of the resonator, the mode-locking element and the solid-state laser medium are disposed to provide an average beam diameter of lasing light of not more than 150 ?m on the mode-locking element and an average beam diameter of the lasing light of not more than 200 ?m within the solid-state laser medium.
    Type: Application
    Filed: August 15, 2008
    Publication date: December 25, 2008
    Applicant: FUJIFILM Corporation
    Inventors: Takashi ADACHI, Shogo YAMAZOE
  • Publication number: 20080317074
    Abstract: A mode-locked laser device includes a Fabry-Perot resonator, a mode-locking element disposed within the resonator, a solid-state laser medium disposed within the resonator, and exciting means for applying excitation light to the solid-state laser medium. The opposite ends of the resonator, the mode-locking element and the solid-state laser medium are disposed to provide an average beam diameter of lasing light of not more than 150 ?m on the mode-locking element and an average beam diameter of the lasing light of not more than 200 ?m within the solid-state laser medium.
    Type: Application
    Filed: August 15, 2008
    Publication date: December 25, 2008
    Applicant: FUJIFILM Corporation
    Inventors: Takashi ADACHI, Shogo YAMAZOE
  • Publication number: 20070297464
    Abstract: A mode-locked laser device includes a Fabry-Perot resonator, a mode-locking element disposed within the resonator, a solid-state laser medium disposed within the resonator, and exciting means for applying excitation light to the solid-state laser medium. The opposite ends of the resonator, the mode-locking element and the solid-state laser medium are disposed to provide an average beam diameter of lasing light of not more than 150 ?m on the mode-locking element and an average beam diameter of the lasing light of not more than 200 ?m within the solid-state laser medium.
    Type: Application
    Filed: June 22, 2007
    Publication date: December 27, 2007
    Applicant: FujiFilm Corporation
    Inventors: Takashi ADACHI, Shogo Yamazoe
  • Publication number: 20070242710
    Abstract: A laser system with a solid state laser medium, having a broad oscillation spectrum with improved absorption efficiency of the laser medium for excitation light. The system includes: a resonator; a solid state laser medium, disposed in the resonator, having optical anisotropy; and an excitation unit for inputting excitation light to the solid state laser medium. The oscillation light is linear polarization light polarized in the direction substantially parallel to a first crystal axis of the solid state laser medium, and the excitation unit linearly polarizes the excitation light, and inputs to the solid state laser medium, with the polarization direction of the excitation light in a direction crossing the first crystal axis. In the solid state laser medium, an absorption coefficient for the excitation light in the polarization direction thereof is greater than an absorption coefficient for the excitation light in the first axis direction.
    Type: Application
    Filed: April 12, 2007
    Publication date: October 18, 2007
    Applicant: FUJIFILM Corporation
    Inventors: Shogo Yamazoe, Takashi Adachi