Patents by Inventor Shu-Lu Chen

Shu-Lu Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190346939
    Abstract: Methods and devices for a display apparatus. In one aspect, a display apparatus includes a display device including a transparent layer, a display integrated circuit layer including one or more display control circuits, and a shielding layer between the transparent layer and the display integrated circuit layer, a near-infrared (NIR) light source and a visible light source, and a detector device including a detector integrated circuit layer including one or more detector control circuits, where a surface of the detector device contacts a surface of the display device, and a photodetector electrically coupled to at least one detector control circuit and including a detection region positioned to receive NIR light propagating from a front side of the display device to a back side of the display device along a path, where the shielding layer includes a filter region positioned in the path.
    Type: Application
    Filed: May 7, 2019
    Publication date: November 14, 2019
    Inventors: Yun-Chung Na, Shu-Lu Chen
  • Publication number: 20190326455
    Abstract: The technique introduced herein decouples the traditional relationship between bandwidth and responsivity, thereby providing a more flexible and wider photodetector design space. In certain examples of the technique introduced here, a photodetector device includes a first mirror, a second mirror, and a light absorption region positioned between the first and second reflective mirrors. For example, the first mirror can be a low-reflectivity mirror, and the second mirror can be a high-reflectivity mirror. The light absorption region is positioned to absorb incident light that is passed through the first mirror and reflected between the first and second mirrors. The first mirror can be configured to exhibit a reflectivity that causes an amount of light energy that escapes from the first mirror, after the light being reflected back by the second mirror, to be zero or near zero.
    Type: Application
    Filed: July 3, 2019
    Publication date: October 24, 2019
    Inventors: Shu-Lu Chen, Yun-Chung Na
  • Patent number: 10418407
    Abstract: A circuit, including: a photodetector including a first readout terminal and a second readout terminal different than the first readout terminal; a first readout circuit coupled with the first readout terminal and configured to output a first readout voltage; a second readout circuit coupled with the second readout terminal and configured to output a second readout voltage; and a common-mode analog-to-digital converter (ADC) including: a first input terminal coupled with a first voltage source; a second input terminal coupled with a common-mode generator, the common-mode generator configured to receive the first readout voltage and the second readout voltage, and to generate a common-mode voltage between the first and second readout voltages; and a first output terminal configured to output a first output signal corresponding to a magnitude of a current generated by the photodetector.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: September 17, 2019
    Assignee: Artilux, Inc.
    Inventors: Yun-Chung Na, Che-Fu Liang, Shu-Lu Chen, Szu-Lin Cheng, Han-Din Liu, Chien-Lung Chen, Yuan-Fu Lyu, Chieh-Ting Lin, Bo-Jiun Chen, Hui-Wen Chen, Shu-Wei Chu, Chung-Chih Lin, Kuan-Chen Chu
  • Patent number: 10386581
    Abstract: A grating based optical transmitter includes a light source region coupled to an interference region, two reflective regions on both sides of the interference region, and one or several gratings interacting with the interference light wave in the interference region causing a vertical emission. Two electrodes are used to inject electrical carriers, and a third electrode can be added to modulate the electrical carrier density recombined in the light source region. Compared to conventional edge-emitting laser with two electrodes, the grating-based optical transmitter in this invention largely reduces the packaging cost and complexity due to the vertical emission, and largely enhances the modulation bandwidth due to the three-terminal configuration.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: August 20, 2019
    Inventors: Shu-Lu Chen, Yun-Chung Na
  • Patent number: 10388806
    Abstract: The technique introduced herein decouples the traditional relationship between bandwidth and responsivity, thereby providing a more flexible and wider photodetector design space. In certain examples of the technique introduced here, a photodetector device includes a first mirror, a second mirror, and a light absorption region positioned between the first and second reflective mirrors. For example, the first mirror can be a low-reflectivity mirror, and the second mirror can be a high-reflectivity mirror. The light absorption region is positioned to absorb incident light that is passed through the first mirror and reflected between the first and second mirrors. The first mirror can be configured to exhibit a reflectivity that causes an amount of light energy that escapes from the first mirror, after the light being reflected back by the second mirror, to be zero or near zero.
    Type: Grant
    Filed: December 24, 2015
    Date of Patent: August 20, 2019
    Assignee: Artilux, Inc.
    Inventors: Shu-Lu Chen, Yun-Chung Na
  • Publication number: 20190140132
    Abstract: Structures and techniques introduced here enable the design and fabrication of photodetectors (PDs) and/or other electronic circuits using typical semiconductor device manufacturing technologies meanwhile reducing the adverse impacts on PDs' performance. Examples of the various structures and techniques introduced here include, but not limited to, a pre-PD homogeneous wafer bonding technique, a pre-PD heterogeneous wafer bonding technique, a post-PD wafer bonding technique, their combinations, and a number of mirror equipped PD structures. With the introduced structures and techniques, it is possible to implement PDs using typical direct growth material epitaxy technology while reducing the adverse impact of the defect layer at the material interface caused by lattice mismatch.
    Type: Application
    Filed: June 1, 2018
    Publication date: May 9, 2019
    Inventors: Szu-Lin Cheng, Han-Din Liu, Shu-Lu Chen, Yun-Chung Na, Hui-Wen Chen
  • Publication number: 20190134969
    Abstract: A method for forming a three-dimensional (3D) object includes providing light sources arranged on a first plane and light sources arranged on a second plane non-parallel to the first plane. Respective light source on the first plane and the second plane is controlled to provide a first energy level to a first cross point to treat a first part of the 3D object. The treated first part is moved to a second cross point of another respective light source on the first plane and the second plane and receives a second energy treatment with a second energy level. During the same time, a second part of the object receives the first energy treatment at the first cross point, where the first energy level is different with the second energy level.
    Type: Application
    Filed: December 21, 2018
    Publication date: May 9, 2019
    Inventor: Shu-Lu CHEN
  • Publication number: 20190140133
    Abstract: Structures and techniques introduced here enable the design and fabrication of photodetectors (PDs) and/or other electronic circuits using typical semiconductor device manufacturing technologies meanwhile reducing the adverse impacts on PDs' performance. Examples of the various structures and techniques introduced here include, but not limited to, a pre-PD homogeneous wafer bonding technique, a pre-PD heterogeneous wafer bonding technique, a post-PD wafer bonding technique, their combinations, and a number of mirror equipped PD structures. With the introduced structures and techniques, it is possible to implement PDs using typical direct growth material epitaxy technology while reducing the adverse impact of the defect layer at the material interface caused by lattice mismatch.
    Type: Application
    Filed: December 13, 2018
    Publication date: May 9, 2019
    Inventors: Chien-Yu Chen, Szu-Lin Cheng, Chieh-Ting Lin, Yu-Hsuan Liu, Ming-Jay Yang, Shu-Lu Chen, Tsung-Ting Wu, Chia-Peng Lin
  • Patent number: 10269862
    Abstract: An optical sensor including a first material layer comprising at least a first material; a second material layer comprising at least a second material that is different from the first material, where a material bandgap of the first material is larger than a material bandgap of the second material; and a graded material layer arranged between the first material layer and the second material layer, the graded material layer comprising an alloy of at least the first material and the second material having compositions of the second material that vary along a direction that is from the first material to the second material.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: April 23, 2019
    Assignee: Artilux Corporation
    Inventors: Yun-Chung Na, Szu-Lin Cheng, Shu-Lu Chen, Han-Din Liu, Hui-Wen Chen
  • Patent number: 10269838
    Abstract: A method for fabricating an image sensor array having a first group of photodiodes for detecting light at visible wavelengths a second group of photodiodes for detecting light at infrared or near-infrared wavelengths, the method including forming a germanium-silicon layer for the second group of photodiodes on a first semiconductor donor wafer; defining a first interconnect layer on the germanium-silicon layer; defining integrated circuitry for controlling pixels of the image sensor array on a semiconductor carrier wafer; defining a second interconnect layer on the semiconductor carrier wafer; bonding the first interconnect layer with the second interconnect layer; defining the pixels of an image sensor array on a second semiconductor donor wafer; defining a third interconnect layer on the image sensor array; and bonding the third interconnect layer with the germanium-silicon layer.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: April 23, 2019
    Assignee: Artilux Corporation
    Inventors: Yun-Chung Na, Szu-Lin Cheng, Shu-Lu Chen, Han-Din Liu, Hui-Wen Chen, Che-Fu Liang
  • Publication number: 20190113696
    Abstract: A method of forming an integrated module forms a surface protrusion structure and a first electrical pad on a first semiconductor substrate and forms a surface indentation structure and a second electrical pad on a second semiconductor substrate. The first semiconductor substrate is disposed over the second semiconductor substrate by substantially matching the protrusion structure to the indentation structure. The first electrical pad is aligned to the second electrical pad to form bonding between the first semiconductor substrate and the second semiconductor substrate.
    Type: Application
    Filed: December 6, 2018
    Publication date: April 18, 2019
    Inventor: Shu-Lu CHEN
  • Patent number: 10256264
    Abstract: An image sensor array including a carrier substrate; a first group of photodiodes coupled to the carrier substrate, where the first group of photodiodes include a first photodiode, and where the first photodiode includes a semiconductor layer configured to absorb photons at visible wavelengths and to generate photo-carriers from the absorbed photons; and a second group of photodiodes coupled to the carrier substrate, where the second group of photodiodes include a second photodiode, and where the second photodiode includes a germanium-silicon region fabricated on the semiconductor layer, the germanium-silicon region configured to absorb photons at infrared or near-infrared wavelengths and to generate photo-carriers from the absorbed photons.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: April 9, 2019
    Assignee: Artilux Corporation
    Inventors: Yun-Chung Na, Szu-Lin Cheng, Shu-Lu Chen, Han-Din Liu, Hui-Wen Chen, Che-Fu Liang
  • Publication number: 20190103435
    Abstract: An optical sensor including a semiconductor substrate; a first light absorption region formed in the semiconductor substrate, the first light absorption region configured to absorb photons at a first wavelength range and to generate photo-carriers from the absorbed photons; a second light absorption region formed on the first light absorption region, the second light absorption region configured to absorb photons at a second wavelength range and to generate photo-carriers from the absorbed photons; and a sensor control signal coupled to the second light absorption region, the sensor control signal configured to provide at least a first control level and a second control level.
    Type: Application
    Filed: December 3, 2018
    Publication date: April 4, 2019
    Inventors: Yun-Chung Na, Szu-Lin Cheng, Shu-Lu Chen, Han-Din Liu, Hui-Wen Chen, Che-Fu Liang
  • Publication number: 20190051765
    Abstract: Examples of the various techniques introduced here include, but not limited to, a mesa height adjustment approach during shallow trench isolation formation, a transistor via first approach, and a multiple absorption layer approach. As described further below, the techniques introduced herein include a variety of aspects that can individually and/or collectively resolve or mitigate one or more traditional limitations involved with manufacturing PDs and transistors on the same substrate, such as above discussed reliability, performance, and process temperature issues.
    Type: Application
    Filed: October 10, 2018
    Publication date: February 14, 2019
    Inventors: Szu-Lin Cheng, Shu-Lu Chen
  • Publication number: 20190011984
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for eye gesture recognition. In one aspect, a method includes obtaining an electrical signal that represents a measurement, by a photodetector, of an optical signal reflected from an eye and determining a depth map of the eye based on phase differences between the electrical signal generated by the photodetector and a reference signal. Further, the method includes determining gaze information that represents a gaze of the eye based on the depth map and providing output data representing the gaze information.
    Type: Application
    Filed: August 30, 2018
    Publication date: January 10, 2019
    Inventors: Yun-Chung Na, Chien-Lung Chen, Han-Din Liu, Shu-Lu Chen
  • Patent number: 10157954
    Abstract: An optical sensor including a semiconductor substrate; a first light absorption region formed in the semiconductor substrate, the first light absorption region configured to absorb photons at a first wavelength range and to generate photo-carriers from the absorbed photons; a second light absorption region formed on the first light absorption region, the second light absorption region configured to absorb photons at a second wavelength range and to generate photo-carriers from the absorbed photons; and a sensor control signal coupled to the second light absorption region, the sensor control signal configured to provide at least a first control level and a second control level.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: December 18, 2018
    Assignee: Artilux Corporation
    Inventors: Yun-Chung Na, Szu-Lin Cheng, Shu-Lu Chen, Han-Din Liu, Hui-Wen Chen, Che-Fu Liang
  • Patent number: 10157947
    Abstract: The technique introduced herein decouples the traditional relationship between bandwidth and responsivity, thereby providing a more flexible and wider photodetector design space. In certain embodiments of the technique introduced here, a photodetector device includes a first mirror, a second mirror, and a light absorption region positioned between the first and second reflective mirrors. For example, the first mirror can be a partial mirror, and the second mirror can be a high-reflectivity mirror. The light absorption region is positioned to absorb incident light that is passed through the first mirror and reflected between the first and second mirrors. The first mirror can be configured to exhibit a reflectivity that causes an amount of light energy that escapes from the first mirror, after the light being reflected back by the second mirror, to be zero or near zero.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: December 18, 2018
    Assignee: Artilux Inc.
    Inventors: Shu-Lu Chen, Yun-Chung Na
  • Patent number: 10128303
    Abstract: A light absorption apparatus includes a substrate, a light absorption layer above the substrate on a first selected area, a silicon layer above the light absorption layer, a spacer surrounding at least part of the sidewall of the light absorption layer, an isolation layer surrounding at least part of the spacer, wherein the light absorption apparatus can achieve high bandwidth and low dark current.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: November 13, 2018
    Assignee: Artilux Inc.
    Inventors: Szu-Lin Cheng, Han-Din Liu, Shu-Lu Chen
  • Publication number: 20180308882
    Abstract: A light absorption apparatus includes a substrate, a light absorption layer above the substrate on a first selected area, a silicon layer above the light absorption layer, a spacer surrounding at least part of the sidewall of the light absorption layer, an isolation layer surrounding at least part of the spacer, wherein the light absorption apparatus can achieve high bandwidth and low dark current.
    Type: Application
    Filed: June 29, 2018
    Publication date: October 25, 2018
    Inventors: Szu-Lin CHENG, Shu-Lu CHEN
  • Publication number: 20180269239
    Abstract: A method for fabricating an image sensor array having a first group of photodiodes for detecting light at visible wavelengths a second group of photodiodes for detecting light at infrared or near-infrared wavelengths, the method including forming a germanium-silicon layer for the second group of photodiodes on a first semiconductor donor wafer; defining a first interconnect layer on the germanium-silicon layer; defining integrated circuitry for controlling pixels of the image sensor array on a semiconductor carrier wafer; defining a second interconnect layer on the semiconductor carrier wafer; bonding the first interconnect layer with the second interconnect layer; defining the pixels of an image sensor array on a second semiconductor donor wafer; defining a third interconnect layer on the image sensor array; and bonding the third interconnect layer with the germanium-silicon layer.
    Type: Application
    Filed: May 17, 2018
    Publication date: September 20, 2018
    Inventors: Yun-Chung Na, Szu-Lin Cheng, Shu-Lu Chen, Han-Din Liu, Hui-Wen Chen, Che-Fu Liang