Patents by Inventor Shu-Lu Chen

Shu-Lu Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150249321
    Abstract: An optical transmitter including two reflective regions formed at two opposite ends of an interference region along a first direction and at least three electrodes electrically coupled to the interference region, where the amount of electrical carriers inside the interference region can be modulated by changing the relative electrical fields among the three electrodes, so that the amount of photons generated inside the interference region can be modulated and resonant along the first direction and emit along a second direction that is different from the first direction.
    Type: Application
    Filed: March 2, 2015
    Publication date: September 3, 2015
    Inventors: Shu-Lu CHEN, Yun-Chung NA
  • Publication number: 20150212242
    Abstract: An optical apparatus including a substrate and a refractive element formed above the substrate. The refractive element including a surface with a predetermined radius of curvature, and a group of periodic structures formed on the surface configured to refract or to filter one or more wavelengths of an incident light.
    Type: Application
    Filed: January 21, 2015
    Publication date: July 30, 2015
    Inventors: Shu-Lu Chen, Yun-Chung Na
  • Publication number: 20150153524
    Abstract: An integrated module includes a first component having a photonic device and electrical pads at a first side and a second side opposite to the first side, and a second component having electrical pads and bonded to the first component by matching their electrical pads. An optical signal is incident from an external medium to the photonic device through an anti-reflection coating at the second side of the first component, a partially-etched opening, or an etch-through opening. The opening can either be in the first component so the optical signal is incident at the photonic device from the second side or the opening can be in the second component so the optical signal is incident at the photonic device through part of the second component. When bonding the first component to the second component, a protrusion and indentation pair can be used to increase the alignment accuracy.
    Type: Application
    Filed: December 2, 2014
    Publication date: June 4, 2015
    Inventor: Shu-Lu CHEN
  • Publication number: 20150117808
    Abstract: An apparatus including a waveguide region configured to guide light propagating along a first direction; a reflector region configured to reflect incident light; an interference region formed between the waveguide region and the reflector region, the interference region configured to confine at least a portion of interference light formed by the incident light and the reflected incident light; and a grating region including a grating formed on a region confining at least a portion of the interference light, the grating configured to couple at least a portion of the light along a second direction that is different from the first direction.
    Type: Application
    Filed: October 9, 2014
    Publication date: April 30, 2015
    Inventors: Shu-Lu Chen, Yun-Chung Na
  • Publication number: 20150117817
    Abstract: An optical device for redirecting an incident electromagnetic wave includes an interference region having a first side and a second side opposite to the first side; a grating structure arranged on a third side of the interference region; a mirror arranged at the first side. An incident electromagnetic wave is impinged into the interference region through the second side or through the grating structure or through a side opposite to the grating structure, and then a substantial portion of the incident electromagnetic wave leaves the interference region at a predetermined angle with respect to the incident direction.
    Type: Application
    Filed: May 30, 2014
    Publication date: April 30, 2015
    Applicant: Forelux Inc.
    Inventors: Shu-Lu Chen, Yun-Chung Na
  • Publication number: 20150037048
    Abstract: A low voltage photodetector structure including a semiconductor device layer, which may be Ge, is disposed over a substrate semiconductor, which may be Si, for example within a portion of a waveguide extending laterally within a photonic integrated circuit (PIC) chip. In exemplary embodiments where the device layer is formed over an insulator layer, the insulator layer is removed to expose a surface of the semiconductor device layer and a passivation material formed as a replacement for the insulator layer within high field regions. In further embodiments, controlled avalanche gain is achieved by spacing electrodes in a metal-semiconductor-metal (MSM) architecture, or complementary doped regions in a p-i-n architecture, to provide a field strength sufficient for impact ionization over a distance not significantly more than an order of magnitude greater than the distance that a carrier must travel so as to acquire sufficient energy for impact ionization.
    Type: Application
    Filed: August 2, 2013
    Publication date: February 5, 2015
    Inventors: Yun-Chung Na, Han-Din Liu, Yimin Kang, Shu-Lu Chen
  • Publication number: 20140284450
    Abstract: The technique introduced herein decouples the traditional relationship between bandwidth and responsivity, thereby providing a more flexible and wider photodetector design space. In certain embodiments of the technique introduced here, a photodetector device includes a first mirror, a second mirror, and a light absorption region positioned between the first and second reflective mirrors. For example, the first mirror can be a partial mirror, and the second mirror can be a high-reflectivity mirror. The light absorption region is positioned to absorb incident light that is passed through the first mirror and reflected between the first and second mirrors. The first mirror can be configured to exhibit a reflectivity that causes an amount of light energy that escapes from the first mirror, after the light being reflected back by the second mirror, to be zero or near zero.
    Type: Application
    Filed: June 6, 2014
    Publication date: September 25, 2014
    Inventors: Shu-Lu Chen, Yun-Chung Na
  • Patent number: 8665385
    Abstract: A non-volatile electronic display includes a light valve plate comprising a plurality of liquid crystal cells on a transparent substrate; a plurality of “floating/storage” nodes functioning like non-volatile memories formed on the transparent substrate and corresponding to the liquid crystal cells, and a plurality of word lines and a plurality of bit lines connected to the plurality of non-volatile memories and supplying signal to store charge to at least one non-volatile memory. The charge is retained in the at least one “floating/storage” nodes functioning like non-volatile memory for a predetermined period when no external power is applied to the non-volatile electronic display.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: March 4, 2014
    Inventor: Shu-Lu Chen
  • Patent number: 8653598
    Abstract: An electrical switch using a gated resistor structure includes an isolation layer, a doped silicon layer arranged on the isolation layer and having a recessed portion with reduced thickness, the doped silicon layer having a predetermined doping type and a predetermined doping profile; a gate layer arranged corresponding to the recessed portion. The recessed portion in the doped silicon layer has such thickness that a channel defined under the gate can be fully depleted to form a high resistivity region. The recessed channel gated resistor structure can be advantageously used to achieve high interconnect density with low thermal budget for 3D integration.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: February 18, 2014
    Inventor: Shu-Lu Chen
  • Patent number: 8283730
    Abstract: A negative differential resistance (NDR) device is designed and a possible compact device implementation is presented. The NDR device includes a voltage blocker and a current blocker and exhibits high peak-to-valley current ratio (PVCR) as well as high switching speed. The corresponding process and design are completely compatible with contemporary Si CMOS technology and area efficient. A single-NDR element SRAM cell prototype with a compact size and high speed is also proposed as its application suitable for embedded memory.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: October 9, 2012
    Inventor: Shu-Lu Chen
  • Publication number: 20120092575
    Abstract: A non-volatile electronic display includes a light valve plate comprising a plurality of liquid crystal cells on a transparent substrate; a plurality of “floating/storage” nodes functioning like non-volatile memories formed on the transparent substrate and corresponding to the liquid crystal cells, and a plurality of word lines and a plurality of bit lines connected to the plurality of non-volatile memories and supplying signal to store charge to at least one non-volatile memory. The charge is retained in the at least one “floating/storage” nodes functioning like non-volatile memory for a predetermined period when no external power is applied to the non-volatile electronic display.
    Type: Application
    Filed: October 14, 2011
    Publication date: April 19, 2012
    Inventor: Shu-Lu CHEN
  • Publication number: 20120056258
    Abstract: An electrical switch using a gated resistor structure includes an isolation layer, a doped silicon layer arranged on the isolation layer and having a recessed portion with reduced thickness, the doped silicon layer having a predetermined doping type and a predetermined doping profile; a gate layer arranged corresponding to the recessed portion. The recessed portion in the doped silicon layer has such thickness that a channel defined under the gate can be fully depleted to form a high resistivity region. The recessed channel gated resistor structure can be advantageously used to achieve high interconnect density with low thermal budget for 3D integration.
    Type: Application
    Filed: September 6, 2011
    Publication date: March 8, 2012
    Inventor: Shu-Lu CHEN
  • Patent number: 7749872
    Abstract: Single-crystalline growth is realized using a liquid-phase crystallization approach involving the inhibition of defects typically associated with liquid-phase crystalline growth of lattice mismatched materials. According to one example embodiment, a semiconductor device structure includes a substantially single-crystal region. A liquid-phase material, such as Ge or a semiconductor compound, is crystallized to form the single-crystal region using an approach involving defect inhibition for the promotion of single-crystalline growth. In some instances, this defect inhibition involves the reduction and/or elimination of defects using a relatively small physical opening via which a crystalline growth front propagates. In other instances, this defect inhibition involves causing a change in crystallization front direction relative to a crystallization seed location.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: July 6, 2010
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: James D. Plummer, Peter B. Griffin, Jia Feng, Shu-Lu Chen
  • Publication number: 20090294869
    Abstract: A negative differential resistance (NDR) device is designed and a possible compact device implementation is presented. The NDR device includes a voltage blocker and a current blocker and exhibits high peak-to-valley current ratio (PVCR) as well as high switching speed. The corresponding process and design are completely compatible with contemporary Si CMOS technology and area efficient. A single-NDR element SRAM cell prototype with a compact size and high speed is also proposed as its application suitable for embedded memory.
    Type: Application
    Filed: May 26, 2009
    Publication date: December 3, 2009
    Inventor: Shu-Lu Chen
  • Publication number: 20090176353
    Abstract: Single-crystalline growth is realized using a liquid-phase crystallization approach involving the inhibition of defects typically associated with liquid-phase crystalline growth of lattice mismatched materials. According to one example embodiment, a semiconductor device structure includes a substantially single-crystal region. A liquid-phase material, such as Ge or a semiconductor compound, is crystallized to form the single-crystal region using an approach involving defect inhibition for the promotion of single-crystalline growth. In some instances, this defect inhibition involves the reduction and/or elimination of defects using a relatively small physical opening via which a crystalline growth front propagates. In other instances, this defect inhibition involves causing a change in crystallization front direction relative to a crystallization seed location.
    Type: Application
    Filed: February 25, 2009
    Publication date: July 9, 2009
    Inventors: James D. Plummer, Peter B. Griffin, Jia Feng, Shu-Lu Chen