Patents by Inventor Shu-Ru Wang

Shu-Ru Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10468420
    Abstract: A static random-access memory (SRAM) cell array forming method includes the following steps. A plurality of fin structures are formed on a substrate, wherein the fin structures include a plurality of active fins and a plurality of dummy fins, each PG (pass-gate) FinFET shares at least one of the active fins with a PD (pull-down) FinFET, and at least one dummy fin is disposed between the two active fins having two adjacent PU (pull-up) FinFETs thereover in a static random-access memory cell. At least a part of the dummy fins are removed. The present invention also provides a static random-access memory (SRAM) cell array formed by said method.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: November 5, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Hsien Huang, Yu-Tse Kuo, Shu-Ru Wang
  • Patent number: 10410684
    Abstract: The present invention provides a memory device, the memory device includes a first region having a plurality of oxide semiconductor static random access memories (OSSRAM) arranged in a first direction, and each of the OSSRAMs comprising a static random access memory (SRAM) and at least an oxide semiconductor dynamic random access memory (DOSRAM), wherein the DOSRAM is connected to the SRAM, wherein each of the DOSRAMs comprises an oxide semiconductor gate (OSG), and each of the OSGs extending in a second direction perpendicular to the first direction, and an oxide semiconductor channel extending in the first direction, an oxide semiconductor gate connection extending in the first direction to connect each of the OSGs, and a word line, a Vcc connection line and a Vss connection line extend in the first direction and are connected to the SRAMs in each OSSRAM.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: September 10, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Yen Tseng, Ting-Hao Chang, Ching-Cheng Lung, Yu-Tse Kuo, Shih-Hao Liang, Chun-Hsien Huang, Shu-Ru Wang, Hsin-Chih Yu
  • Patent number: 10366756
    Abstract: A control circuit for a ternary content-addressable memory includes a first logic unit and a second logic unit. The first logic unit is coupled to a first storage unit, a second storage unit, a first search line, a second search line, a reference voltage terminal, and a match line. The second logic unit is coupled to the first storage unit, the second storage unit, the first search line, the second search line, a first power supply line and a second power supply line. When voltages at the first search line and the second search line match voltages at the first storage unit and the second storage unit, the second logic unit provides a path for electrically connecting the first power supply line to the second power supply line.
    Type: Grant
    Filed: August 19, 2018
    Date of Patent: July 30, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Yen Tseng, Ching-Cheng Lung, Yu-Tse Kuo, Chun-Hsien Huang, Hsin-Chih Yu, Shu-Ru Wang
  • Publication number: 20190221238
    Abstract: The present invention provides a memory device, the memory device includes a first region having a plurality of oxide semiconductor static random access memories (OSSRAM) arranged in a first direction, and each of the OSSRAMs comprising a static random access memory (SRAM) and at least an oxide semiconductor dynamic random access memory (DOSRAM), wherein the DOSRAM is connected to the SRAM, wherein each of the DOSRAMs comprises an oxide semiconductor gate (OSG), and each of the OSGs extending in a second direction perpendicular to the first direction, and an oxide semiconductor channel extending in the first direction, an oxide semiconductor gate connection extending in the first direction to connect each of the OSGs, and a word line, a Vcc connection line and a Vss connection line extend in the first direction and are connected to the SRAMs in each OSSRAM.
    Type: Application
    Filed: February 21, 2018
    Publication date: July 18, 2019
    Inventors: Chun-Yen Tseng, Ting-Hao Chang, Ching-Cheng Lung, Yu-Tse Kuo, Shih-Hao Liang, Chun-Hsien Huang, Shu-Ru Wang, Hsin-Chih Yu
  • Publication number: 20190206879
    Abstract: A semiconductor device includes a first circuit structure and a second circuit structure. The first circuit structure has a first line terminal. The second circuit structure has a second line terminal. The first line terminal and the second line terminal are formed in a first circuit layer but separated by a gap. A conductive structure is forming in a second circuit layer above or below the first circuit layer, to electrically connect the first line terminal and the second line terminal.
    Type: Application
    Filed: January 30, 2018
    Publication date: July 4, 2019
    Applicant: United Microelectronics Corp.
    Inventors: Chun-Hsien Huang, Ching-Cheng Lung, Yu-Tse Kuo, Chang-Hung Chen, Shu-Ru Wang, Wei-Chi Lee, Chun-Yen Tseng
  • Publication number: 20190096892
    Abstract: A layout pattern of a static random access memory (SRAM) includes a substrate, a first pull-up transistor (PL1), a first pull-down transistor (PD1), a second (PL2), and a second pull-down transistor (PD2) on the substrate, and a first pass gate transistor (PG1A), a second pass gate transistor (PG1B), a third pass gate transistor (PG2A) and a fourth pass gate transistor (PG2B), wherein the PG1A and the PG1B comprise a first fin structure, the PG2A and the PG2B comprise a second fin structure, a first local interconnection layer disposed between the PG1A and the PG1B and disposed on the fin structures of the PL1 and the PD1, a second local interconnection layer disposed between the PG2A and the PG2B and disposed between the fin structures of the PL2 and the PD2, the first local interconnection layer and the second local interconnection layer are monolithically formed structures respectively.
    Type: Application
    Filed: October 16, 2018
    Publication date: March 28, 2019
    Inventors: Shu-Ru Wang, Ching-Cheng Lung, Yu-Tse Kuo, Chien-Hung Chen, Chun-Hsien Huang, Li-Ping Huang, Chun-Yen Tseng, Meng-Ping Chuang
  • Patent number: 10153287
    Abstract: A layout pattern of a static random access memory (SRAM) includes a substrate, a first pull-up transistor (PL1), a first pull-down transistor (PD1), a second (PL2), and a second pull-down transistor (PD2) on the substrate, and a first pass gate transistor (PG1A), a second pass gate transistor (PG1B), a third pass gate transistor (PG2A) and a fourth pass gate transistor (PG2B), wherein the PG1A and the PG1B comprise an identical first fin structure, the PG2A and the PG2B comprise an identical second fin structure, a first local interconnection layer disposed between the PG1A and the PG1B and disposed on the fin structures of the PL1 and the PD1, a second local interconnection layer disposed between the PG2A and the PG2B and disposed between the fin structures of the PL2 and the PD2.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: December 11, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shu-Ru Wang, Ching-Cheng Lung, Yu-Tse Kuo, Chien-Hung Chen, Chun-Hsien Huang, Li-Ping Huang, Chun-Yen Tseng, Meng-Ping Chuang
  • Publication number: 20180315763
    Abstract: A static random-access memory (SRAM) cell array forming method includes the following steps. A plurality of fin structures are formed on a substrate, wherein the fin structures include a plurality of active fins and a plurality of dummy fins, each PG (pass-gate) FinFET shares at least one of the active fins with a PD (pull-down) FinFET, and at least one dummy fin is disposed between the two active fins having two adjacent PU (pull-up) FinFETs thereover in a static random-access memory cell. At least a part of the dummy fins are removed. The present invention also provides a static random-access memory (SRAM) cell array formed by said method.
    Type: Application
    Filed: July 6, 2018
    Publication date: November 1, 2018
    Inventors: Chun-Hsien Huang, Yu-Tse Kuo, Shu-Ru Wang
  • Patent number: 10050046
    Abstract: A static random-access memory (SRAM) cell array forming method includes the following steps. A plurality of fin structures are formed on a substrate, wherein the fin structures include a plurality of active fins and a plurality of dummy fins, each PG (pass-gate) FinFET shares at least one of the active fins with a PD (pull-down) FinFET, and at least one dummy fin is disposed between the two active fins having two adjacent PU (pull-up) FinFETs thereover in a static random-access memory cell. At least a part of the dummy fins are removed. The present invention also provides a static random-access memory (SRAM) cell array formed by said method.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: August 14, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Hsien Huang, Yu-Tse Kuo, Shu-Ru Wang
  • Patent number: 9953988
    Abstract: A static random-access memory (SRAM) cell array forming method includes the following steps. A plurality of fin structures are formed on a substrate, wherein the fin structures include a plurality of active fins and a plurality of dummy fins, each PG (pass-gate) FinFET shares at least one of the active fins with a PD (pull-down) FinFET, and at least one dummy fin is disposed between the two active fins having two adjacent pull-up FinFETs thereover in a static random-access memory cell. At least a part of the dummy fins are removed. The present invention also provides a static random-access memory (SRAM) cell array formed by said method.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: April 24, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Hsien Huang, Yu-Tse Kuo, Shu-Ru Wang
  • Patent number: 9947674
    Abstract: A static random-access memory (SRAM) cell array forming method includes the following steps. A plurality of fin structures are formed on a substrate, wherein the fin structures include a plurality of active fins and a plurality of dummy fins, each PG (pass-gate) FinFET shares at least one of the active fins with a PD (pull-down) FinFET, and at least one dummy fin is disposed between the two active fins having two adjacent pull-up FinFETs thereover in a static random-access memory cell. At least a part of the dummy fins are removed. The present invention also provides a static random-access memory (SRAM) cell array formed by said method.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: April 17, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Hsien Huang, Yu-Tse Kuo, Shu-Ru Wang
  • Patent number: 9941288
    Abstract: A static random-access memory (SRAM) cell array forming method includes the following steps. A plurality of fin structures are formed on a substrate, wherein the fin structures include a plurality of active fins and a plurality of dummy fins, each PG (pass-gate) FinFET shares at least one of the active fins with a PD (pull-down) FinFET, and at least one dummy fin is disposed between the two active fins having two adjacent pull-up FinFETs thereover in a static random-access memory cell. At least a part of the dummy fins are removed. The present invention also provides a static random-access memory (SRAM) cell array formed by said method.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: April 10, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Hsien Huang, Yu-Tse Kuo, Shu-Ru Wang
  • Publication number: 20180006040
    Abstract: A static random-access memory (SRAM) cell array forming method includes the following steps. A plurality of fin structures are formed on a substrate, wherein the fin structures include a plurality of active fins and a plurality of dummy fins, each PG (pass-gate) FinFET shares at least one of the active fins with a PD (pull-down) FinFET, and at least one dummy fin is disposed between the two active fins having two adjacent PU (pull-up) FinFETs thereover in a static random-access memory cell. At least a part of the dummy fins are removed. The present invention also provides a static random-access memory (SRAM) cell array formed by said method.
    Type: Application
    Filed: August 31, 2017
    Publication date: January 4, 2018
    Inventors: Chun-Hsien Huang, Yu-Tse Kuo, Shu-Ru Wang
  • Patent number: 9859282
    Abstract: A high-density semiconductor structure includes a substrate, a bit line and a first memory unit. The bit line, disposed on the substrate, has a first side and a second side. The first memory unit includes a first transistor, a first capacitor, a second transistor and a second capacitor. The first transistor disposed on the substrate has a first terminal and a second terminal. The first terminal connects the bit line. The first capacitor connects the second terminal of the first transistor. The second transistor disposed on the substrate has a third terminal and a fourth terminal. The third terminal connects the bit line. The second capacitor connects the fourth terminal of the second transistor. The first capacitor and the second capacitor are separated from the bit line in a direction perpendicular to an extending direction of the bit line and located on the first side of the bit line.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: January 2, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Yen Tseng, Ching-Cheng Lung, Yu-Tse Kuo, Chun-Hsien Huang, Shu-Ru Wang
  • Patent number: 9859170
    Abstract: A method of forming a semiconductor structure is provided. A substrate having a memory region is provided. A plurality of fin structures are provided and each fin structure stretching along a first direction. A plurality of gate structures are formed, and each gate structure stretches along a second direction. Next, a dielectric layer is formed on the gate structures. A first patterned mask layer is formed, wherein the first patterned mask layer has a plurality of first trenches stretching along the second direction. A second patterned mask layer on the first patterned mask layer, wherein the second patterned mask layer comprises a plurality of first patterns stretching along the first direction. Subsequently, the dielectric layer is patterned by using the first patterned mask layer and the second patterned mask layer as a mask to form a plurality of contact vias. The contact holes are filled with a conductive layer.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: January 2, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ching-Wen Hung, Wei-Cyuan Lo, Ming-Jui Chen, Chia-Lin Lu, Jia-Rong Wu, Yi-Hui Lee, Ying-Cheng Liu, Yi-Kuan Wu, Chih-Sen Huang, Yi-Wei Chen, Tan-Ya Yin, Chia-Wei Huang, Shu-Ru Wang, Yung-Feng Cheng
  • Publication number: 20170373073
    Abstract: A static random-access memory (SRAM) cell array forming method includes the following steps. A plurality of fin structures are formed on a substrate, wherein the fin structures include a plurality of active fins and a plurality of dummy fins, each PG (pass-gate) FinFET shares at least one of the active fins with a PD (pull-down) FinFET, and at least one dummy fin is disposed between the two active fins having two adjacent pull-up FinFETs thereover in a static random-access memory cell. At least a part of the dummy fins are removed. The present invention also provides a static random-access memory (SRAM) cell array formed by said method.
    Type: Application
    Filed: August 25, 2017
    Publication date: December 28, 2017
    Inventors: Chun-Hsien Huang, Yu-Tse Kuo, Shu-Ru Wang
  • Publication number: 20170317091
    Abstract: A static random-access memory (SRAM) cell array forming method includes the following steps. A plurality of fin structures are formed on a substrate, wherein the fin structures include a plurality of active fins and a plurality of dummy fins, each PG (pass-gate) FinFET shares at least one of the active fins with a PD (pull-down) FinFET, and at least one dummy fin is disposed between the two active fins having two adjacent pull-up FinFETs thereover in a static random-access memory cell. At least a part of the dummy fins are removed. The present invention also provides a static random-access memory (SRAM) cell array formed by said method.
    Type: Application
    Filed: June 27, 2017
    Publication date: November 2, 2017
    Inventors: Chun-Hsien Huang, Yu-Tse Kuo, Shu-Ru Wang
  • Publication number: 20170317090
    Abstract: A static random-access memory (SRAM) cell array forming method includes the following steps. A plurality of fin structures are formed on a substrate, wherein the fin structures include a plurality of active fins and a plurality of dummy fins, each PG (pass-gate) FinFET shares at least one of the active fins with a PD (pull-down) FinFET, and at least one dummy fin is disposed between the two active fins having two adjacent pull-up FinFETs thereover in a static random-access memory cell. At least a part of the dummy fins are removed. The present invention also provides a static random-access memory (SRAM) cell array formed by said method.
    Type: Application
    Filed: June 27, 2017
    Publication date: November 2, 2017
    Inventors: Chun-Hsien Huang, Yu-Tse Kuo, Shu-Ru Wang
  • Patent number: 9799650
    Abstract: A semiconductor layout structure includes at least a first signal line and a pair of Vss lines. The first signal line and the pair of Vss lines are extended along a first direction, and the Vss lines are arranged along a second direction. The first direction and the second direction are perpendicular to each other. The Vss lines are arranged at respective two sides of the first signal line.
    Type: Grant
    Filed: February 14, 2016
    Date of Patent: October 24, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Hsien Huang, Yu-Tse Kuo, Shu-Ru Wang
  • Publication number: 20170294429
    Abstract: A semiconductor layout structure includes a substrate comprising a cell edge region and a dummy region abutting thereto, a plurality of dummy contact patterns disposed in the dummy region and arranged along a first direction, and a plurality of dummy gate patterns disposed in the dummy region and arranged along the first direction. The dummy contact patterns and the dummy gate patterns are alternately arranged. Each dummy contact pattern includes an inner dummy contact proximal to the cell edge region and an outer dummy contact distal to the cell edge region, and the inner dummy contact and the outer dummy contact are arranged along a second direction perpendicular to the first direction and spaced apart from each other by a first gap.
    Type: Application
    Filed: April 7, 2016
    Publication date: October 12, 2017
    Inventors: Chun-Hsien Huang, Yung-Feng Cheng, Yu-Tse Kuo, Chia-Wei Huang, Li-Ping Huang, Shu-Ru Wang