Patents by Inventor Shu-Yuan Ku

Shu-Yuan Ku has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210335674
    Abstract: A semiconductor device includes a first semiconductor fin extending along a first direction. The semiconductor device includes a second semiconductor fin also extending along the first direction. The semiconductor device includes a dielectric structure disposed between the first and second semiconductor fins. The semiconductor device includes a gate isolation structure vertically disposed above the dielectric structure. The semiconductor device includes a metal gate layer extending along a second direction perpendicular to the first direction, wherein the metal gate layer includes a first portion straddling the first semiconductor fin and a second portion straddling the second semiconductor fin. The gate isolation structure separates the first and second portions of the metal gate layer from each other and includes a bottom portion extending into the dielectric structure.
    Type: Application
    Filed: February 3, 2021
    Publication date: October 28, 2021
    Applicant: Taiwan Semicondutor Manufacturing Company Limited
    Inventors: Shih-Yao Lin, Chih-Han Lin, Shu-Yuan Ku, Shu-Uei Jang, Ya-Yi Tsai, I-Wei Yang
  • Patent number: 11152250
    Abstract: Gate cutting techniques for integrated circuit devices, particularly for fin-like field effect transistor devices, are disclosed herein. An exemplary method includes receiving an integrated circuit device that includes a gate structure and performing a gate cut process to separate the gate structure into a first gate structure and a second gate structure. The gate cut process includes selectively removing a portion of the gate structure, such that a residual gate dielectric layer extends between the first gate structure and the second gate structure. In some implementations, the residual gate dielectric includes a high-k dielectric material. The method further includes forming a gate isolation region between the first gate structure and the second gate structure.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: October 19, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shu-Yuan Ku, Chih-Ming Sun, Chun-Fai Cheng
  • Patent number: 11145536
    Abstract: Gate cutting techniques for integrated circuit devices, particularly for fin-like field effect transistor devices, are disclosed herein. An exemplary method includes receiving an integrated circuit device that includes a gate structure and performing a gate cut process to separate the gate structure into a first gate structure and a second gate structure. The gate cut process includes selectively removing a portion of the gate structure, such that a residual gate dielectric layer extends between the first gate structure and the second gate structure. In some implementations, the residual gate dielectric includes a high-k dielectric material. The method further includes forming a gate isolation region between the first gate structure and the second gate structure.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: October 12, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shu-Yuan Ku, Chih-Ming Sun, Chun-Fai Cheng
  • Publication number: 20210296181
    Abstract: The first and second fins extend upwardly from a semiconductor substrate. The shallow trench isolation structure laterally surrounds lower portions of the first and second fins. The first gate structure extends across an upper portion of the first fin. The second gate structure extends across an upper portion of the second fin. The first source/drain epitaxial structures are on the first fin and on opposite sides of the first gate structure. The second source/drain epitaxial structures are on the second fin and on opposite sides of the second gate structure. The separation plug interposes the first and second gate structures and extends along a lengthwise direction of the first fin. The isolation material cups an underside of a portion of the separation plug between one of the first source/drain epitaxial structures and one of the second source/drain epitaxial structures.
    Type: Application
    Filed: June 7, 2021
    Publication date: September 23, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Chang HUNG, Shu-Yuan KU, I-Wei YANG, Yi-Hsuan HSIAO, Ming-Ching CHANG, Ryan Chia-Jen CHEN
  • Publication number: 20210296484
    Abstract: A first FinFET device includes first fin structures that extend in a first direction in a top view. A second FinFET device includes second fin structures that extend in the first direction in the top view. The first FinFET device and the second FinFET device are different types of FinFET devices. A plurality of gate structures extend in a second direction in the top view. The second direction is different from the first direction. Each of the gate structures partially wraps around the first fin structures and the second fin structures. A dielectric structure is disposed between the first FinFET device and the second FinFET device. The dielectric structure cuts each of the gate structures into a first segment for the first FinFET device and a second segment for the second FinFET device. The dielectric structure is located closer to the first FinFET device than to the second FinFET device.
    Type: Application
    Filed: June 7, 2021
    Publication date: September 23, 2021
    Inventors: Chang-Yun Chang, Ming-Ching Chang, Shu-Yuan Ku
  • Patent number: 11107902
    Abstract: A method includes forming a first and a second dummy gate stack crossing over a semiconductor region, forming an ILD to embed the first and the second dummy gate stacks therein, replacing the first and the second dummy gate stacks with a first and a second replacement gate stack, respectively, performing a first etching process to form a first opening. A portion of the first replacement gate stack and a portion of the second replacement gate stack are removed. The method further includes filling the first opening to form a dielectric isolation region, performing a second etching process to form a second opening, with the ILD being etched, and the dielectric isolation region being exposed to the second opening, forming a contact spacer in the second opening, and filling a contact plug in the second opening. The contact plug is between opposite portions of the contact spacer.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: August 31, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ting-Gang Chen, Tai-Chun Huang, Yi-Ting Fu, Ming-Chang Wen, Shu-Yuan Ku, Fu-Kai Yang, Tze-Liang Lee, Yung-Cheng Lu
  • Publication number: 20210249313
    Abstract: An anchored cut-metal gate (CMG) plug, a semiconductor device including the anchored CMG plug and methods of forming the semiconductor device are disclosed herein. The method includes performing a series of etching processes to form a trench through a metal gate electrode, through an isolation region, and into a semiconductor substrate. The trench cuts-through and separates the metal gate electrode into a first metal gate and a second metal gate and forms a recess in the semiconductor substrate. Once the trench has been formed, a dielectric plug material is deposited into the trench to form a CMG plug that is anchored within the recess of the semiconductor substrate and separates the first and second metal gates. As such, the anchored CMG plug provides high levels of resistance to reduce leakage current within the semiconductor device during operation and allowing for improved V-trigger performance of the semiconductor device.
    Type: Application
    Filed: February 11, 2020
    Publication date: August 12, 2021
    Inventors: Yi-Chun Chen, Ryan Chia-Jen Chen, Shu-Yuan Ku, Ya-Yi Tsai, I-Wei Yang
  • Publication number: 20210242192
    Abstract: Methods for cutting (e.g., dividing) metal gate structures in semiconductor device structures are provided. A dual layer structure can form sub-metal gate structures in a replacement gate manufacturing processes, in some examples. In an example, a semiconductor device includes a plurality of metal gate structures disposed in an interlayer dielectric (ILD) layer disposed on a substrate, an isolation structure disposed between the metal gate structures, wherein the ILD layer circumscribes a perimeter of the isolation structure, and a dielectric structure disposed between the ILD layer and the isolation structure.
    Type: Application
    Filed: March 31, 2021
    Publication date: August 5, 2021
    Inventors: Shiang-Bau Wang, Ryan Chia-Jen Chen, Shu-Yuan Ku, Ming-Ching Chang
  • Publication number: 20210242093
    Abstract: A device includes a semiconductor substrate and a first gate stack over the semiconductor substrate, the first gate stack being between a first gate spacer and a second gate spacer. The device further includes a second gate stack over the semiconductor substrate between the first gate spacer and the second gate spacer and a dielectric material separating the first gate stack from the second gate stack. The dielectric material is at least partially between the first gate spacer and the second gate spacer, a first width of an upper portion of the dielectric material is greater than a second width of a lower portion of the dielectric material, and a third width of an upper portion of the first gate spacer is less than a fourth width of a lower portion of the first gate spacer.
    Type: Application
    Filed: May 11, 2020
    Publication date: August 5, 2021
    Inventors: Shih-Yao Lin, Chih-Han Lin, Shu-Uei Jang, Ya-Yi Tsai, Shu-Yuan Ku
  • Patent number: 11056478
    Abstract: Methods for cutting (e.g., dividing) metal gate structures in semiconductor device structures are provided. A dual layer structure can form sub-metal gate structures in a replacement gate manufacturing processes, in some examples. In an example, a semiconductor device includes a plurality of metal gate structures disposed in an interlayer dielectric (ILD) layer disposed on a substrate, an isolation structure disposed between the metal gate structures, wherein the ILD layer circumscribes a perimeter of the isolation structure, and a dielectric structure disposed between the ILD layer and the isolation structure.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: July 6, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shiang-Bau Wang, Ryan Chia-Jen Chen, Shu-Yuan Ku, Ming-Ching Chang
  • Publication number: 20210193528
    Abstract: Metal gate cutting techniques for fin-like field effect transistors (FinFETs) are disclosed herein. An exemplary method includes receiving an integrated circuit (IC) device structure that includes a substrate, one or more fins disposed over the substrate, a plurality of gate structures disposed over the fins, a dielectric layer disposed between and adjacent to the gate structures, and a patterning layer disposed over the gate structures. The gate structures traverses the fins and includes first and second gate structures. The method further includes: forming an opening in the patterning layer to expose a portion of the first gate structure, a portion of the second gate structure, and a portion of the dielectric layer; and removing the exposed portion of the first gate structure, the exposed portion of the second gate structure, and the exposed portion of the dielectric layer.
    Type: Application
    Filed: March 8, 2021
    Publication date: June 24, 2021
    Inventors: Ya-Yi Tsai, Yi-Hsuan Hsiao, Shu-Yuan Ku, Ryan Chia-Jen Chen, Ming-Ching Chang
  • Patent number: 11031290
    Abstract: A semiconductor structure with cutting depth control and method for fabricating the same are provided. In the method for fabricating the semiconductor device, at first, fins protruding from a substrate are formed. Next, source/drain devices are grown on both ends of the fins. Then, an inter-layer dielectric layer crossing the fins and enclosing the source/drain devices is deposited. A metal gate structure enclosed by the inter-layer dielectric layer is formed between the source/drain devices. And then, a replacement operation is performed to replace a portion of the inter-layer dielectric layer with an isolation material, thereby forming an isolation portion that adjoins the metal gate structure and is located between the adjacent source/drain devices. Thereafter, a metal gate cut operation is performed, thereby forming an opening in the metal gate structure and an opening in the isolation portion, and an insulating material is deposited in the openings.
    Type: Grant
    Filed: January 21, 2018
    Date of Patent: June 8, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Chang Hung, Shu-Yuan Ku, I-Wei Yang, Yi-Hsuan Hsiao, Ming-Ching Chang, Ryan Chia-Jen Chen
  • Patent number: 11031501
    Abstract: A first FinFET device includes first fin structures that extend in a first direction in a top view. A second FinFET device includes second fin structures that extend in the first direction in the top view. The first FinFET device and the second FinFET device are different types of FinFET devices. A plurality of gate structures extend in a second direction in the top view. The second direction is different from the first direction. Each of the gate structures partially wraps around the first fin structures and the second fin structures. A dielectric structure is disposed between the first FinFET device and the second FinFET device. The dielectric structure cuts each of the gate structures into a first segment for the first FinFET device and a second segment for the second FinFET device. The dielectric structure is located closer to the first FinFET device than to the second FinFET device.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: June 8, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chang-Yun Chang, Ming-Ching Chang, Shu-Yuan Ku
  • Publication number: 20210126109
    Abstract: A method includes forming a dummy gate stack, etching the dummy gate stack to form an opening, depositing a first dielectric layer extending into the opening, and depositing a second dielectric layer on the first dielectric layer and extending into the opening. A planarization process is then performed to form a gate isolation region including the first dielectric layer and the second dielectric layer. The dummy gate stack is then removed to form trenches on opposing sides of the gate isolation region. The method further includes performing a first etching process to remove sidewall portions of the first dielectric layer, performing a second etching process to thin the second dielectric layer, and forming replacement gates in the trenches.
    Type: Application
    Filed: May 6, 2020
    Publication date: April 29, 2021
    Inventors: Shih-Yao Lin, Chih-Han Lin, Shu-Uei Jang, Ya-Yi Tsai, Shu-Yuan Ku
  • Publication number: 20210125875
    Abstract: A method includes forming a first fin and a second fin on a substrate; forming a dummy gate material over the first fin and the second fin; etching the dummy gate material using a first etching process to form a recess between the first fin and the second fin, wherein a sacrificial material is formed on sidewalls of the recess during the first etching process; filling the recess with an insulation material; removing the dummy gate material and the sacrificial material using a second etching process; and forming a first replacement gate over the first fin and a second replacement gate over the second fin, wherein the first replacement gate is separated from the second replacement gate by the insulation material.
    Type: Application
    Filed: July 8, 2020
    Publication date: April 29, 2021
    Inventors: Ya-Yi Tsai, Wei-Ting Guo, I-Wei Yang, Shu-Yuan Ku
  • Publication number: 20210111280
    Abstract: A semiconductor device and method of forming thereof includes a first fin and a second fin each extending from a substrate. A first gate segment is disposed over the first fin and a second gate segment is disposed over the second fin. An interlayer dielectric (ILD) layer is adjacent the first gate segment and the second gate segment. A cut region (e.g., opening or gap between first gate structure and the second gate structure) extends between the first and second gate segments. The cut region has a first portion has a first width and a second portion has a second width, the second width is greater than the first width. The second portion interposes the first and second gate segments and the first portion is defined within the ILD layer.
    Type: Application
    Filed: December 21, 2020
    Publication date: April 15, 2021
    Inventors: I-Wei YANG, Chih-Chang HUNG, Shu-Yuan KU, Ryan Chia-Jen CHEN, Ming-Ching CHANG
  • Publication number: 20210090958
    Abstract: A conductive gate over a semiconductor fin is cut into a first conductive gate and a second conductive gate. An oxide is removed from sidewalls of the first conductive gate and a dielectric material is applied to the sidewalls. Spacers adjacent to the conductive gate are removed to form voids, and the voids are capped with a dielectric material to form air spacers.
    Type: Application
    Filed: December 7, 2020
    Publication date: March 25, 2021
    Inventors: Shu-Uei Jang, Chen-Huang Huang, Ryan Chia-Jen Chen, Shiang-Bau Wang, Shu-Yuan Ku
  • Patent number: 10943828
    Abstract: Metal gate cutting techniques for fin-like field effect transistors (FinFETs) are disclosed herein. An exemplary method includes receiving an integrated circuit (IC) device structure that includes a substrate, one or more fins disposed over the substrate, a plurality of gate structures disposed over the fins, a dielectric layer disposed between and adjacent to the gate structures, and a patterning layer disposed over the gate structures. The gate structures traverses the fins and includes first and second gate structures. The method further includes: forming an opening in the patterning layer to expose a portion of the first gate structure, a portion of the second gate structure, and a portion of the dielectric layer; and removing the exposed portion of the first gate structure, the exposed portion of the second gate structure, and the exposed portion of the dielectric layer.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: March 9, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ya-Yi Tsai, Yi-Hsuan Hsiao, Shu-Yuan Ku, Ryan Chia-Jen Chen, Ming-Ching Chang
  • Publication number: 20210050350
    Abstract: Methods of cutting gate structures, and structures formed, are described. In an embodiment, a structure includes first and second gate structures over an active area, and a gate cut-fill structure. The first and second gate structures extend parallel. The active area includes a source/drain region disposed laterally between the first and second gate structures. The gate cut-fill structure has first and second primary portions and an intermediate portion. The first and second primary portions abut the first and second gate structures, respectively. The intermediate portion extends laterally between the first and second primary portions. First and second widths of the first and second primary portions along longitudinal midlines of the first and second gate structures, respectively, are each greater than a third width of the intermediate portion midway between the first and second gate structures and parallel to the longitudinal midline of the first gate structure.
    Type: Application
    Filed: October 30, 2020
    Publication date: February 18, 2021
    Inventors: Chih-Chang Hung, Chia-Jen Chen, Ming-Ching Chang, Shu-Yuan Ku, Yi-Hsuan Hsiao, I-Wei Yang
  • Patent number: 10872978
    Abstract: A semiconductor device and method of forming thereof includes a first fin and a second fin each extending from a substrate. A first gate segment is disposed over the first fin and a second gate segment is disposed over the second fin. An interlayer dielectric (ILD) layer is adjacent the first gate segment and the second gate segment. A cut region (e.g., opening or gap between first gate structure and the second gate structure) extends between the first and second gate segments. The cut region has a first portion has a first width and a second portion has a second width, the second width is greater than the first width. The second portion interposes the first and second gate segments and the first portion is defined within the ILD layer.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: December 22, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: I-Wei Yang, Chih-Chang Hung, Shu-Yuan Ku, Ryan Chia-Jen Chen, Ming-Ching Chang