Patents by Inventor Shu-Yuan Ku

Shu-Yuan Ku has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230105271
    Abstract: Metal gate cutting techniques for fin-like field effect transistors (FinFETs) are disclosed herein. An exemplary method includes receiving an integrated circuit (IC) device structure that includes a substrate, one or more fins disposed over the substrate, a plurality of gate structures disposed over the fins, a dielectric layer disposed between and adjacent to the gate structures, and a patterning layer disposed over the gate structures. The gate structures traverses the fins and includes first and second gate structures. The method further includes: forming an opening in the patterning layer to expose a portion of the first gate structure, a portion of the second gate structure, and a portion of the dielectric layer; and removing the exposed portion of the first gate structure, the exposed portion of the second gate structure, and the exposed portion of the dielectric layer.
    Type: Application
    Filed: December 12, 2022
    Publication date: April 6, 2023
    Inventors: Ya-Yi Tsai, Yi-Hsuan Hsiao, Shu-Yuan Ku, Ryan Chia-Jen Chen, Ming-Ching Chang
  • Patent number: 11616061
    Abstract: A method includes providing a structure having a substrate, semiconductor fins, and an isolation structure between adjacent semiconductor fins; forming a first gate structure engaging the semiconductor fins; depositing an inter-layer dielectric layer over the semiconductor fins and the first gate structure; removing the first gate structure, resulting in a first trench; depositing a second gate structure into the first trench, wherein the second gate structure includes a dielectric layer and a conductive layer; forming one or more mask layers over the second gate structure; patterning the one or more mask layers to have an opening exposing a portion of the second gate structure between two adjacent semiconductor fins; and etching the second gate structure through the opening to produce a second trench having tapered sidewalls, wherein the second trench is wider at top than at bottom.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: March 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ya-Yi Tsai, Chun-Liang Lai, Shu-Yuan Ku, Ryan Chia-Jen Chen, Ming-Ching Chang
  • Patent number: 11600718
    Abstract: A semiconductor device and method of fabricating a semiconductor device involves formation of a trench above a fin (e.g. a fin of a FinFET device) of the semiconductor device and formation of a multi-layer dielectric structure within the trench. The profile of the multi-layer dielectric structure can be controlled depending on the application to reduce shadowing effects and reduce cut failure risk, among other possible benefits. The multi-layer dielectric structure can include two layers, three layers, or any number of layers and can have a stepped profile, a linear profile, or any other type of profile.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: March 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Ya-Yi Tsai, Chi-Hsiang Chang, Shih-Yao Lin, Tzu-Chung Wang, Shu-Yuan Ku
  • Publication number: 20230061323
    Abstract: A method of fabricating a semiconductor device is described. A substrate is provided. A plurality of fins is formed extending from the substrate, the fins including a first group of active fins arranged in an active region, and including an inactive fin having at least a portion in an inactive region, the active fins separated by first trench regions between adjacent of the active regions, the inactive fin separated from its closest active fin by a second trench region, the second trench region having a greater width than that of a trench region of the first trench regions. A dummy fin is formed on the isolation dielectric in the second trench region, the dummy fin disposed between the first group of active fins and the inactive fin. A dummy gate is formed over the fins. The gate isolation structure is disposed between the dummy fin and the inactive fin and separates regions of the dummy gate.
    Type: Application
    Filed: August 28, 2021
    Publication date: March 2, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ya-Yi Tsai, Shih-Yao Lin, Chi-Hsiang Chang, Wei-Han Chen, Shu-Yuan Ku
  • Publication number: 20230066828
    Abstract: A semiconductor device includes a substrate; a semiconductor fin structure disposed over the substrate, wherein the semiconductor fin structure extend along a first lateral direction; a gate structure that straddles a semiconductor fin structure, wherein the gate structure extends along a second lateral direction, the first lateral direction perpendicular to the second lateral direction; a dielectric fin structure that extends along the first lateral direction and is disposed next to the semiconductor structure fin structure; and a gate isolation structure disposed above the dielectric fin structure. The gate isolation structure contacts an upper portion of the gate structure at a first tilted interface.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shu-Uei Jang, Shih-Yao Lin, Chieh-Ning Feng, Shu-Yuan Ku
  • Publication number: 20230067752
    Abstract: A method of fabricating a semiconductor device is described. A plurality of semiconductor fins is formed in a first region on a substrate. An isolation region is formed around the plurality of semiconductor fins. Dummy fins are formed extending above the isolation region and laterally adjacent the plurality of semiconductor fins. A first etch is performed to etch the plurality of semiconductor fins such that a top surface of the plurality of semiconductor fins has a same height as a top surface of the isolation region. A second etch is performed selectively etching the isolation region to form a first recess in the isolation region laterally adjacent the semiconductor fins. A third etch is performed selectively etching the plurality of semiconductor fins to remove the plurality of semiconductor fins and to etch a second recess through the isolation region into the semiconductor substrate.
    Type: Application
    Filed: August 28, 2021
    Publication date: March 2, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ya-Yi Tsai, Yi-Chun Chen, Wei-Han Chen, Wei-Ting Guo, Shu-Yuan Ku
  • Publication number: 20230005797
    Abstract: A device includes a semiconductor substrate and a first gate stack over the semiconductor substrate, the first gate stack being between a first gate spacer and a second gate spacer. The device further includes a second gate stack over the semiconductor substrate between the first gate spacer and the second gate spacer and a dielectric material separating the first gate stack from the second gate stack. The dielectric material is at least partially between the first gate spacer and the second gate spacer, a first width of an upper portion of the dielectric material is greater than a second width of a lower portion of the dielectric material, and a third width of an upper portion of the first gate spacer is less than a fourth width of a lower portion of the first gate spacer.
    Type: Application
    Filed: July 20, 2022
    Publication date: January 5, 2023
    Inventors: Shih-Yao Lin, Chih-Han Lin, Shu-Uei Jang, Ya-Yi Tsai, Shu-Yuan Ku
  • Publication number: 20220415886
    Abstract: A semiconductor device includes a first semiconductor fin and a second semiconductor fin extending along a first direction. The semiconductor device includes a dielectric fin, extending along the first direction, that is disposed between the first and second semiconductor fins. The semiconductor device includes a gate isolation structure vertically disposed above the dielectric fin. The semiconductor device includes a metal gate layer extending along a second direction perpendicular to the first direction, wherein the metal gate layer includes a first portion straddling the first semiconductor fin and a second portion straddling the second semiconductor fin. The gate isolation structure has a central portion and one or more side portions, the central portion extends toward the dielectric fin a further distance than at least one of the one or more side portions.
    Type: Application
    Filed: June 23, 2021
    Publication date: December 29, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: YA-YI TSAI, Wen-Shuo Hsieh, Shu-Yuan Ku, Chieh-Ning Feng
  • Publication number: 20220415716
    Abstract: A method includes forming a first semiconductor fin and a second semiconductor fin over a substrate that both extend along a first direction. The method includes forming a dielectric fin extending along the first direction and is disposed between the first and second semiconductor fins. The method includes forming a dummy gate structure extending along a second direction and straddling the first and second semiconductor fins and the dielectric fin. The method includes removing a portion of the dummy gate structure over the dielectric fin to form a trench by performing an etching process that includes a plurality of stages. Each of the plurality of stages includes a combination of anisotropic etching and isotropic etching such that a variation of a distance between respective inner sidewalls of the trench along the second direction is within a threshold.
    Type: Application
    Filed: June 23, 2021
    Publication date: December 29, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shu-Uei Jang, Shu-Yuan Ku, Shih-Yao Lin
  • Publication number: 20220415889
    Abstract: A semiconductor device includes a substrate. The semiconductor device includes a dielectric fin that is formed over the substrate and extends along a first direction. The semiconductor device includes a gate isolation structure vertically disposed above the dielectric fin. The semiconductor device includes a gate structure extending along a second direction perpendicular to the first direction. The gate structure includes a first portion and a second portion separated by the gate isolation structure and the dielectric fin. The first portion of the gate structure presents a first beak profile and the second portion of the gate structure presents a second beak profile. The first and second beak profiles point toward each other.
    Type: Application
    Filed: June 23, 2021
    Publication date: December 29, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Yao Lin, Chih-Han Lin, Ming-Ching Chang, Shu-Yuan Ku, Tzu-Chung Wang
  • Patent number: 11527445
    Abstract: A semiconductor device includes a first transistor, a second transistor, a third transistor, and a fourth transistor. The first and second transistors operate under a lower gate voltage than the third and fourth transistors. The first transistor has a first active gate structure and the second transistor has a second active gate structure. The first and second active gate structures are separated by a first gate isolation structure along a first direction. The third transistor has a third active gate structure and the fourth transistor has a fourth active gate structure. The third and fourth active gate structures are separated by a second gate isolation structure along the first direction. The variation of a first distance between respective sidewalls of the first gate isolation structure is equal to the variation of a second distance between respective sidewalls of the second gate isolation structure along the first direction.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: December 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Shu-Uei Jang, Shu-Yuan Ku, Shih-Yao Lin
  • Patent number: 11527443
    Abstract: Metal gate cutting techniques for fin-like field effect transistors (FinFETs) are disclosed herein. An exemplary method includes receiving an integrated circuit (IC) device structure that includes a substrate, one or more fins disposed over the substrate, a plurality of gate structures disposed over the fins, a dielectric layer disposed between and adjacent to the gate structures, and a patterning layer disposed over the gate structures. The gate structures traverses the fins and includes first and second gate structures. The method further includes: forming an opening in the patterning layer to expose a portion of the first gate structure, a portion of the second gate structure, and a portion of the dielectric layer; and removing the exposed portion of the first gate structure, the exposed portion of the second gate structure, and the exposed portion of the dielectric layer.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: December 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ya-Yi Tsai, Yi-Hsuan Hsiao, Shu-Yuan Ku, Ryan Chia-Jen Chen, Ming-Ching Chang
  • Publication number: 20220393018
    Abstract: A semiconductor device is described. An isolation region is disposed on the substrate. A plurality of channels extend through the isolation region from the substrate. The channels including an active channel and an inactive channel. A dummy fin is disposed on the isolation region and between the active channel and the inactive channel. An active gate is disposed over the active channel and the inactive channel, and contacts the isolation region. A dielectric material extends through the active gate and contacts a top of the dummy fin. The inactive channel is a closest inactive channel to the dielectric material. A long axis of the active channel extends in a first direction. A long axis of the active gate extends in a second direction. The active channel extends in a third direction from the substrate. The dielectric material is closer to the inactive channel than to the active channel.
    Type: Application
    Filed: June 3, 2021
    Publication date: December 8, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Shih-Yao LIN, Hsiao Wen Lee, Ya-Yi Tsai, Shu-Uei Jang, Chih-Han Lin, Shu-Yuan Ku
  • Publication number: 20220384616
    Abstract: A method of forming a semiconductor device includes etching a gate stack to form a trench extending into the gate stack, forming a dielectric layer on a sidewall of the gate stack, with the sidewall exposed to the trench, and etching the dielectric layer to remove a first portion of the dielectric layer at a bottom of the trench. A second portion of the dielectric layer on the sidewall of the gate stack remains after the dielectric layer is etched. After the first portion of the dielectric layer is removed, the second portion of the dielectric layer is removed to reveal the sidewall of the gate stack. The trench is filled with a dielectric region, which contacts the sidewall of the gate stack.
    Type: Application
    Filed: August 9, 2022
    Publication date: December 1, 2022
    Inventors: Shu-Uei Jang, Ya-Yi Tsai, Ryan Chia-Jen Chen, An Chyi Wei, Shu-Yuan Ku
  • Publication number: 20220384270
    Abstract: A method includes forming a first fin and a second fin on a substrate; forming a dummy gate material over the first fin and the second fin; etching the dummy gate material using a first etching process to form a recess between the first fin and the second fin, wherein a sacrificial material is formed on sidewalls of the recess during the first etching process; filling the recess with an insulation material; removing the dummy gate material and the sacrificial material using a second etching process; and forming a first replacement gate over the first fin and a second replacement gate over the second fin, wherein the first replacement gate is separated from the second replacement gate by the insulation material.
    Type: Application
    Filed: August 10, 2022
    Publication date: December 1, 2022
    Inventors: Ya-Yi Tsai, Wei-Ting Guo, I-Wei Yang, Shu-Yuan Ku
  • Patent number: 11508582
    Abstract: A method of forming a semiconductor device includes etching a gate stack to form a trench extending into the gate stack, forming a dielectric layer on a sidewall of the gate stack, with the sidewall exposed to the trench, and etching the dielectric layer to remove a first portion of the dielectric layer at a bottom of the trench. A second portion of the dielectric layer on the sidewall of the gate stack remains after the dielectric layer is etched. After the first portion of the dielectric layer is removed, the second portion of the dielectric layer is removed to reveal the sidewall of the gate stack. The trench is filled with a dielectric region, which contacts the sidewall of the gate stack.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: November 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shu-Uei Jang, Ya-Yi Tsai, Ryan Chia-Jen Chen, An Chyi Wei, Shu-Yuan Ku
  • Publication number: 20220359306
    Abstract: A semiconductor device includes a first transistor, a second transistor, a third transistor, and a fourth transistor. The first and second transistors operate under a lower gate voltage than the third and fourth transistors. The first transistor has a first active gate structure and the second transistor has a second active gate structure. The first and second active gate structures are separated by a first gate isolation structure along a first direction. The third transistor has a third active gate structure and the fourth transistor has a fourth active gate structure. The third and fourth active gate structures are separated by a second gate isolation structure along the first direction. The variation of a first distance between respective sidewalls of the first gate isolation structure is equal to the variation of a second distance between respective sidewalls of the second gate isolation structure along the first direction.
    Type: Application
    Filed: July 21, 2022
    Publication date: November 10, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shu-Uei Jang, Shu-Yuan Ku, Shih-Yao Lin
  • Publication number: 20220359510
    Abstract: Methods of cutting gate structures, and structures formed, are described. In an embodiment, a structure includes first and second gate structures over an active area, and a gate cut-fill structure. The first and second gate structures extend parallel. The active area includes a source/drain region disposed laterally between the first and second gate structures. The gate cut-fill structure has first and second primary portions and an intermediate portion. The first and second primary portions abut the first and second gate structures, respectively. The intermediate portion extends laterally between the first and second primary portions. First and second widths of the first and second primary portions along longitudinal midlines of the first and second gate structures, respectively, are each greater than a third width of the intermediate portion midway between the first and second gate structures and parallel to the longitudinal midline of the first gate structure.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 10, 2022
    Inventors: Chih-Chang Hung, Chia-Jen Chen, Ming-Ching Chang, Shu-Yuan Ku, Yi-Hsuan Hsiao, I-Wei Yang
  • Publication number: 20220344491
    Abstract: A semiconductor device and method of fabricating a semiconductor device involves formation of a trench above a fin (e.g. a fin of a FinFET device) of the semiconductor device and formation of a multi-layer dielectric structure within the trench. The profile of the multi-layer dielectric structure can be controlled depending on the application to reduce shadowing effects and reduce cut failure risk, among other possible benefits. The multi-layer dielectric structure can include two layers, three layers, or any number of layers and can have a stepped profile, a linear profile, or any other type of profile.
    Type: Application
    Filed: April 22, 2021
    Publication date: October 27, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Ya-Yi Tsai, Chi-Hsiang Chang, Shih-Yao LIN, Tzu-Chung Wang, Shu-Yuan Ku
  • Patent number: 11444080
    Abstract: Methods of cutting gate structures, and structures formed, are described. In an embodiment, a structure includes first and second gate structures over an active area, and a gate cut-fill structure. The first and second gate structures extend parallel. The active area includes a source/drain region disposed laterally between the first and second gate structures. The gate cut-fill structure has first and second primary portions and an intermediate portion. The first and second primary portions abut the first and second gate structures, respectively. The intermediate portion extends laterally between the first and second primary portions. First and second widths of the first and second primary portions along longitudinal midlines of the first and second gate structures, respectively, are each greater than a third width of the intermediate portion midway between the first and second gate structures and parallel to the longitudinal midline of the first gate structure.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: September 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Chang Hung, Chia-Jen Chen, Ming-Ching Chang, Shu-Yuan Ku, Yi-Hsuan Hsiao, I-Wei Yang