Patents by Inventor Shuang Ji

Shuang Ji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11943989
    Abstract: A display module and a display device are disclosed. The display module includes a first flexible circuit board, a display substrate, and a touch sensor disposed on the display side of the display substrate. The display substrate includes a flat region and curved surface regions; the touch sensor includes first and second bonding regions; the first bonding region and the second bonding region are on a surface, away from the display substrate, of the touch sensor, stacked with the flat region and spaced apart from each other; the first flexible circuit board is electrically connected with the touch sensor through the first bonding region and the second bonding region; the first flexible circuit board includes a main body and first and second bonding connection portions; the first and second bonding connection portions are respectively bonded with the first and second bonding regions.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: March 26, 2024
    Assignees: CHENGDU BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Xiaoxia Huang, Bing Ji, Shuang Zhang
  • Patent number: 11923392
    Abstract: The present disclosure relates to an integrated chip. The integrated chip includes an image sensing element disposed within a substrate. A gate structure is disposed along a front-side of the substrate. A back-side of the substrate includes one or more first angled surfaces defining a central diffuser disposed over the image sensing element. The back-side of the substrate further includes second angled surfaces defining a plurality of peripheral diffusers laterally surrounding the central diffuser. The plurality of peripheral diffusers are a smaller size than the central diffuser.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Keng-Yu Chou, Chun-Hao Chuang, Jen-Cheng Liu, Kazuaki Hashimoto, Ming-En Chen, Shyh-Fann Ting, Shuang-Ji Tsai, Wei-Chieh Chiang
  • Patent number: 11901396
    Abstract: Provided is a method of fabricating an image sensor device. An exemplary includes forming a plurality of radiation-sensing regions in a substrate. The substrate has a front surface, a back surface, and a sidewall that extends from the front surface to the back surface. The exemplary method further includes forming an interconnect structure over the front surface of the substrate, removing a portion of the substrate to expose a metal interconnect layer of the interconnect structure, and forming a bonding pad on the interconnect structure in a manner so that the bonding pad is electrically coupled to the exposed metal interconnect layer and separated from the sidewall of the substrate.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shuang-Ji Tsai, Dun-Nian Yaung, Jen-Cheng Liu, Wen-De Wang, Hsiao-Hui Tseng
  • Publication number: 20230369366
    Abstract: The present disclosure relates to an integrated chip. The integrated chip includes an image sensing element disposed within a substrate. A gate structure is disposed along a front-side of the substrate. A back-side of the substrate includes one or more first angled surfaces defining a central diffuser disposed over the image sensing element. The back-side of the substrate further includes second angled surfaces defining a plurality of peripheral diffusers laterally surrounding the central diffuser. The plurality of peripheral diffusers are a smaller size than the central diffuser.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Inventors: Keng-Yu Chou, Chun-Hao Chuang, Jen-Cheng Liu, Kazuaki Hashimoto, Ming-En Chen, Shyh-Fann Ting, Shuang-Ji Tsai, Wei-Chieh Chiang
  • Publication number: 20230352508
    Abstract: Image sensors and processes of forming the same are provided. An image sensor according to the present disclosure includes a first photodiode disposed between a second photodiode and a third photodiode along a direction, a first deep trench isolation (DTI) feature disposed between the first photodiode and the second photodiode, and a second DTI feature disposed between the first photodiode and the third photodiode. A depth of the first DTI feature is greater than a depth of the second DTI feature. A quantum efficiency of the second photodiode is smaller than a quantum efficiency of the first photodiode.
    Type: Application
    Filed: August 22, 2022
    Publication date: November 2, 2023
    Inventors: Wei Chih Huang, Shuang-Ji Tsai, Hsing-Chih Lin, Jen-Cheng Liu, Dun-Nian Yaung
  • Patent number: 11476295
    Abstract: Provided is a method of fabricating an image sensor device. An exemplary includes forming a plurality of radiation-sensing regions in a substrate. The substrate has a front surface, a back surface, and a sidewall that extends from the front surface to the back surface. The exemplary method further includes forming an interconnect structure over the front surface of the substrate, removing a portion of the substrate to expose a metal interconnect layer of the interconnect structure, and forming a bonding pad on the interconnect structure in a manner so that the bonding pad is electrically coupled to the exposed metal interconnect layer and separated from the sidewall of the substrate.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: October 18, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shuang-Ji Tsai, Dun-Nian Yaung, Jen-Cheng Liu, Wen-De Wang, Hsiao-Hui Tseng
  • Publication number: 20220277127
    Abstract: A method for wafer bonding includes receiving a layout of a bonding layer with an asymmetric pattern, determining whether an asymmetry level of the layout is within a predetermined range by a design rule checker, modifying the layout to reduce the asymmetry level of the layout if the asymmetry level is beyond the predetermined range. The method also includes outputting the layout in a computer-readable format.
    Type: Application
    Filed: November 29, 2021
    Publication date: September 1, 2022
    Inventors: Shih-Han Huang, Wen-I Hsu, Shuang-Ji Tsai, Ming-Hsien Yang, Yen-Ting Chiang, Shyh-Fann Ting, Feng-Chi Hung, Jen-Cheng Liu, Dun-Nian Yaung
  • Publication number: 20220216260
    Abstract: The present disclosure relates to an integrated chip. The integrated chip includes an image sensing element disposed within a substrate. A gate structure is disposed along a front-side of the substrate. A back-side of the substrate includes one or more first angled surfaces defining a central diffuser disposed over the image sensing element. The back-side of the substrate further includes second angled surfaces defining a plurality of peripheral diffusers laterally surrounding the central diffuser. The plurality of peripheral diffusers are a smaller size than the central diffuser.
    Type: Application
    Filed: January 4, 2021
    Publication date: July 7, 2022
    Inventors: Keng-Yu Chou, Chun-Hao Chuang, Jen-Cheng Liu, Kazuaki Hashimoto, Ming-En Chen, Shyh-Fann Ting, Shuang-Ji Tsai, Wei-Chieh Chiang
  • Patent number: 11011567
    Abstract: An image sensor structure that includes a first semiconductor substrate having a plurality of imaging sensors; a first interconnect structure formed on the first semiconductor substrate; a second semiconductor substrate having a logic circuit; a second interconnect structure formed on the second semiconductor substrate, wherein the first and the second semiconductor substrates are bonded together in a configuration that the first and second interconnect structures are sandwiched between the first and second semiconductor substrates; and a backside deep contact (BDCT) feature extended from the first interconnect structure to the second interconnect structure, thereby electrically coupling the logic circuit to the image sensors.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: May 18, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Chun-Chieh Chuang, Feng-Chi Hung, Shuang-Ji Tsai, Jeng-Shyan Lin, Shu-Ting Tsai, Wen-I Hsu
  • Publication number: 20210143208
    Abstract: Provided is a method of fabricating an image sensor device. An exemplary includes forming a plurality of radiation-sensing regions in a substrate. The substrate has a front surface, a back surface, and a sidewall that extends from the front surface to the back surface. The exemplary method further includes forming an interconnect structure over the front surface of the substrate, removing a portion of the substrate to expose a metal interconnect layer of the interconnect structure, and forming a bonding pad on the interconnect structure in a manner so that the bonding pad is electrically coupled to the exposed metal interconnect layer and separated from the sidewall of the substrate.
    Type: Application
    Filed: January 21, 2021
    Publication date: May 13, 2021
    Inventors: Shuang-Ji Tsai, Dun-Nian Yaung, Jen-Cheng Liu, Wen-De Wang, Hsiao-Hui Tseng
  • Patent number: 10777539
    Abstract: A three-dimensional (3D) integrated circuit (IC) die is provided. In some embodiments, a first IC die comprises a first semiconductor substrate, a first interconnect structure over the first semiconductor substrate, and a first hybrid bond (HB) structure over the first interconnect structure. The first HB structure comprises a HB link layer and a HB contact layer extending from the HB link layer to the first interconnect structure. A second IC die is over the first IC die, and comprises a second semiconductor substrate, a second HB structure, and a second interconnect structure between the second semiconductor substrate and the second HB structure. The second HB structure contacts the first HB structure. A seal-ring structure is in the first and second IC dies. Further, the seal-ring structure extends from the first semiconductor substrate to the second semiconductor substrate, and is defined in part by the HB contact layer.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: September 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Shin Chu, Kuan-Chieh Huang, Pao-Tung Chen, Shuang-Ji Tsai, Yi-Hao Chen, Feng-Kuei Chang
  • Publication number: 20200144325
    Abstract: Provided is a method of fabricating an image sensor device. An exemplary includes forming a plurality of radiation-sensing regions in a substrate. The substrate has a front surface, a back surface, and a sidewall that extends from the front surface to the back surface. The exemplary method further includes forming an interconnect structure over the front surface of the substrate, removing a portion of the substrate to expose a metal interconnect layer of the interconnect structure, and forming a bonding pad on the interconnect structure in a manner so that the bonding pad is electrically coupled to the exposed metal interconnect layer and separated from the sidewall of the substrate.
    Type: Application
    Filed: December 27, 2019
    Publication date: May 7, 2020
    Inventors: Shuang-Ji Tsai, Dun-Nian Yaung, Jen-Cheng Liu, Wen-De Wang, Hsiao-Hui Tseng
  • Patent number: 10590031
    Abstract: An ellipsometry system detects and/or identifies significant corrosion on glass, such as on soda-lime-silica based float glass. In certain example embodiments, there is provided a method and/or system using ellipsometry to detect and/or identify significant corrosion on soda-lime-silica based glass, so that such significantly corroded glass can be identified and not coated with a low-E coating and/or not used in applications where optical appearance is important. The ellipsometry system may be part of, or used in connection with, a sputtering apparatus/system for sputter-depositing low-E coatings on glass, so that whether to pass a piece of glass to the sputtering apparatus/system is based on whether significant corrosion is detected on the glass.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: March 17, 2020
    Assignee: GUARDIAN GLASS, LLC
    Inventors: Ali Mohammadkhah, Shuang Ji, Jay Riggins, Kevin R. Fulton
  • Publication number: 20200075659
    Abstract: An image sensor structure that includes a first semiconductor substrate having a plurality of imaging sensors; a first interconnect structure formed on the first semiconductor substrate; a second semiconductor substrate having a logic circuit; a second interconnect structure formed on the second semiconductor substrate, wherein the first and the second semiconductor substrates are bonded together in a configuration that the first and second interconnect structures are sandwiched between the first and second semiconductor substrates; and a backside deep contact (BDCT) feature extended from the first interconnect structure to the second interconnect structure, thereby electrically coupling the logic circuit to the image sensors.
    Type: Application
    Filed: November 8, 2019
    Publication date: March 5, 2020
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Chun-Chieh Chuang, Feng-Chi Hung, Shuang-Ji Tsai, Jen-Shyan Lin, Shu-Ting Tsai, Wen-I Hsu
  • Patent number: 10566378
    Abstract: Provided is a method of fabricating an image sensor device. An exemplary includes forming a plurality of radiation-sensing regions in a substrate. The substrate has a front surface, a back surface, and a sidewall that extends from the front surface to the back surface. The exemplary method further includes forming an interconnect structure over the front surface of the substrate, removing a portion of the substrate to expose a metal interconnect layer of the interconnect structure, and forming a bonding pad on the interconnect structure in a manner so that the bonding pad is electrically coupled to the exposed metal interconnect layer and separated from the sidewall of the substrate.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: February 18, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shuang-Ji Tsai, Dun-Nian Yaung, Jen-Cheng Liu, Wen-De Wang, Hsiao-Hui Tseng
  • Publication number: 20200027860
    Abstract: A three-dimensional (3D) integrated circuit (IC) die is provided. In some embodiments, a first IC die comprises a first semiconductor substrate, a first interconnect structure over the first semiconductor substrate, and a first hybrid bond (HB) structure over the first interconnect structure. The first HB structure comprises a HB link layer and a HB contact layer extending from the HB link layer to the first interconnect structure. A second IC die is over the first IC die, and comprises a second semiconductor substrate, a second HB structure, and a second interconnect structure between the second semiconductor substrate and the second HB structure. The second HB structure contacts the first HB structure. A seal-ring structure is in the first and second IC dies. Further, the seal-ring structure extends from the first semiconductor substrate to the second semiconductor substrate, and is defined in part by the HB contact layer.
    Type: Application
    Filed: September 26, 2019
    Publication date: January 23, 2020
    Inventors: Yi-Shin Chu, Kuan-Chieh Huang, Pao-Tung Chen, Shuang-Ji Tsai, Yi-Hao Chen, Feng-Kuei Chang
  • Patent number: 10535697
    Abstract: An image sensor structure that includes a first semiconductor substrate having a plurality of imaging sensors; a first interconnect structure formed on the first semiconductor substrate; a second semiconductor substrate having a logic circuit; a second interconnect structure formed on the second semiconductor substrate, wherein the first and the second semiconductor substrates are bonded together in a configuration that the first and second interconnect structures are sandwiched between the first and second semiconductor substrates; and a backside deep contact (BDCT) feature extended from the first interconnect structure to the second interconnect structure, thereby electrically coupling the logic circuit to the image sensors.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: January 14, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Chun-Chieh Chuang, Feng-Chi Hung, Shuang-Ji Tsai, Jen-Shyan Lin, Shu-Ting Tsai, Wen-I Hsu
  • Patent number: 10535696
    Abstract: An integrated circuit structure includes a semiconductor substrate, and a dielectric pad extending from a bottom surface of the semiconductor substrate up into the semiconductor substrate. A low-k dielectric layer is disposed underlying the semiconductor substrate. A first non-low-k dielectric layer is underlying the low-k dielectric layer. A metal pad is underlying the first non-low-k dielectric layer. A second non-low-k dielectric layer is underlying the metal pad. An opening extends from a top surface of the semiconductor substrate down to penetrate through the semiconductor substrate, the dielectric pad, and the low-k dielectric layer, wherein the opening lands on a top surface of the metal pad. A passivation layer includes a portion on a sidewall of the opening, wherein a portion of the passivation layer at a bottom of the opening is removed.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: January 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jeng-Shyan Lin, Dun-Nian Yaung, Jen-Cheng Liu, Wen-De Wang, Shuang-Ji Tsai, Yueh-Chiou Lin
  • Publication number: 20190345057
    Abstract: An ellipsometry system detects and/or identifies significant corrosion on glass, such as on soda-lime-silica based float glass. In certain example embodiments, there is provided a method and/or system using ellipsometry to detect and/or identify significant corrosion on soda-lime-silica based glass, so that such significantly corroded glass can be identified and not coated with a low-E coating and/or not used in applications where optical appearance is important. The ellipsometry system may be part of, or used in connection with, a sputtering apparatus/system for sputter-depositing low-E coatings on glass, so that whether to pass a piece of glass to the sputtering apparatus/system is based on whether significant corrosion is detected on the glass.
    Type: Application
    Filed: May 11, 2018
    Publication date: November 14, 2019
    Inventors: Ali MOHAMMADKHAH, Shuang JI, Jay RIGGINS, Kevin R. FULTON
  • Patent number: 10475772
    Abstract: A three-dimensional (3D) integrated circuit (IC) die is provided. In some embodiments, a first IC die comprises a first semiconductor substrate, a first interconnect structure over the first semiconductor substrate, and a first hybrid bond (HB) structure over the first interconnect structure. The first HB structure comprises a HB link layer and a HB contact layer extending from the HB link layer to the first interconnect structure. A second IC die is over the first IC die, and comprises a second semiconductor substrate, a second HB structure, and a second interconnect structure between the second semiconductor substrate and the second HB structure. The second HB structure contacts the first HB structure. A seal-ring structure is in the first and second IC dies. Further, the seal-ring structure extends from the first semiconductor substrate to the second semiconductor substrate, and is defined in part by the HB contact layer.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: November 12, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Shin Chu, Kuan-Chieh Huang, Pao-Tung Chen, Shuang-Ji Tsai, Yi-Hao Chen, Feng-Kuei Chang