Patents by Inventor Shuang Ji

Shuang Ji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150279893
    Abstract: An image sensor structure that includes a first semiconductor substrate having a plurality of imaging sensors; a first interconnect structure formed on the first semiconductor substrate; a second semiconductor substrate having a logic circuit; a second interconnect structure formed on the second semiconductor substrate, wherein the first and the second semiconductor substrates are bonded together in a configuration that the first and second interconnect structures are sandwiched between the first and second semiconductor substrates; and a backside deep contact (BDCT) feature extended from the first interconnect structure to the second interconnect structure, thereby electrically coupling the logic circuit to the image sensors.
    Type: Application
    Filed: June 15, 2015
    Publication date: October 1, 2015
    Inventors: Min-Feng KAO, Dun-Nian YAUNG, Jen-Cheng LIU, Chun-Chieh CHUANG, Feng-Chi HUNG, Shuang-Ji TSAI, Jeng-Shyan LIN, Shu-Ting TSAI, Wen-I HSU
  • Patent number: 9147702
    Abstract: One or more embodiments of techniques or systems for mitigating dark current of an image sensor are provided herein. Generally, a silicon interface, such as an edge of a dielectric region or an edge between a back side interface (BSI) region and a pass region, is a source of electrons or holes which cause dark current. In some embodiments, the image sensor includes a surface protect region. For example, the surface protect region is doped with a first doping type and a photo-diode of the image sensor is doped with the same first doping type. In this manner, the surface protect region acts as an electron magnet or a hole magnet for electrons or holes from the silicon interface, thus mitigating electrons or holes from the silicon interface from being collected by the photo-diode, for example.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: September 29, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Feng-Chi Hung, Dun-Nian Yaung, Jen-Cheng Liu, Shu-Ting Tsai, Shuang-Ji Tsai
  • Patent number: 9142690
    Abstract: A method of fabricating a semiconductor device includes providing a device substrate having a front side and a back side corresponding to a front side and a back side of the semiconductor device, forming, on the front side of the device substrate, a metal feature, forming, on the back side of the device substrate, an insulating layer, forming, on the back side of the semiconductor device, a trench exposing the metal feature, forming a bonding pad in the trench in electrical communication with the metal feature, and forming, on the insulating layer, a metal shield, in which the metal shield and the bonding pad have different thicknesses relative to each other.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: September 22, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shuang-Ji Tsai, Dun-Nian Yaung, Jen-Cheng Liu, Wen-De Wang, Jeng-Shyan Lin, Cheng-Ying Ho
  • Publication number: 20150228690
    Abstract: An integrated circuit structure includes a semiconductor substrate, and a dielectric pad extending from a bottom surface of the semiconductor substrate up into the semiconductor substrate. A low-k dielectric layer is disposed underlying the semiconductor substrate. A first non-low-k dielectric layer is underlying the low-k dielectric layer. A metal pad is underlying the first non-low-k dielectric layer. A second non-low-k dielectric layer is underlying the metal pad. An opening extends from a top surface of the semiconductor substrate down to penetrate through the semiconductor substrate, the dielectric pad, and the low-k dielectric layer, wherein the opening lands on a top surface of the metal pad. A passivation layer includes a portion on a sidewall of the opening, wherein a portion of the passivation layer at a bottom of the opening is removed.
    Type: Application
    Filed: April 20, 2015
    Publication date: August 13, 2015
    Inventors: Jeng-Shyan Lin, Dun-Nian Yaung, Jen-Cheng Liu, Wen-De Wang, Shuang-Ji Tsai, Yueh-Chiou Lin
  • Publication number: 20150194465
    Abstract: An image sensor device includes a semiconductor substrate having a front side and a backside. A first dielectric layer is on the front side of the semiconductor substrate. A metal pad is in the first dielectric layer. A second dielectric layer is over the first dielectric layer and on the front side of the semiconductor substrate. An opening penetrates through the semiconductor substrate from the backside of the semiconductor substrate, wherein the opening includes a first portion extending to expose a portion of the metal pad and a second portion extending to expose a portion of the second dielectric layer. A metal layer is formed in the first portion and the second portion of the opening.
    Type: Application
    Filed: March 23, 2015
    Publication date: July 9, 2015
    Inventors: Jeng-Shyan Lin, Dun-Nian Yaung, Jen-Cheng Liu, Wen-De Wang, Shuang-Ji Tsai, Yueh-Chiou Lin
  • Patent number: 9059061
    Abstract: The present disclosure provides an embodiment of an image sensor structure that includes a first semiconductor substrate having a plurality of imaging sensors; a first interconnect structure formed on the first semiconductor substrate; a second semiconductor substrate having a logic circuit; a second interconnect structure formed on the second semiconductor substrate, wherein the first and the second semiconductor substrates are bonded together in a configuration that the first and second interconnect structures are sandwiched between the first and second semiconductor substrates; and a backside deep contact (BDCT) feature extended from the first interconnect structure to the second interconnect structure, thereby electrically coupling the logic circuit to the image sensors.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: June 16, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Chun-Chieh Chuang, Feng-Chi Hung, Shuang-Ji Tsai, Jeng-Shyan Lin, Shu-Ting Tsai, Wen-I Hsu
  • Patent number: 9041206
    Abstract: A semiconductor device comprises a first semiconductor chip including a first substrate and a plurality of first metal lines formed over the first substrate and a second semiconductor chip bonded on the first semiconductor chip, wherein the second semiconductor chip comprises a second substrate and a plurality of second metal lines formed over the second substrate. The semiconductor device further comprises a conductive plug coupled between the first metal lines and the second metal lines, wherein the conductive plug comprises a first portion formed over a first side of a hard mask layer, wherein the first portion is of a first width and a second portion formed over a second side of the hard mask layer, wherein the second portion is of a second width greater than or equal to the first width.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 26, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shu-Ting Tsai, Dun-Nian Yaung, Cheng-Jong Wang, Jen-Cheng Liu, Feng-Chi Hung, Tzu-Hsuan Hsu, U-Ting Chen, Jeng-Shyan Lin, Shuang-Ji Tsai
  • Publication number: 20150140722
    Abstract: BSI image sensors and methods. In an embodiment, a substrate is provided having a sensor array and a periphery region and having a front side and a back side surface; a bottom anti-reflective coating (BARC) is formed over the back side to a first thickness, over the sensor array region and the periphery region; forming a first dielectric layer over the BARC; a metal shield is formed; selectively removing the metal shield from over the sensor array region; selectively removing the first dielectric layer from over the sensor array region, wherein a portion of the first thickness of the BARC is also removed and a remainder of the first thickness of the BARC remains during the process of selectively removing the first dielectric layer; forming a second dielectric layer over the remainder of the BARC and over the metal shield; and forming a passivation layer over the second dielectric layer.
    Type: Application
    Filed: January 29, 2015
    Publication date: May 21, 2015
    Inventors: Chun-Chieh Chuang, Dun-Nian Yaung, Jen-Cheng Liu, Wen-De Wang, Keng-Yu Chou, Shuang-Ji Tsai, Min-Feng Kao
  • Patent number: 9013022
    Abstract: An integrated circuit structure includes a semiconductor substrate, and a dielectric pad extending from a bottom surface of the semiconductor substrate up into the semiconductor substrate. A low-k dielectric layer is disposed underlying the semiconductor substrate. A first non-low-k dielectric layer is underlying the low-k dielectric layer. A metal pad is underlying the first non-low-k dielectric layer. A second non-low-k dielectric layer is underlying the metal pad. An opening extends from a top surface of the semiconductor substrate down to penetrate through the semiconductor substrate, the dielectric pad, and the low-k dielectric layer, wherein the opening lands on a top surface of the metal pad. A passivation layer includes a portion on a sidewall of the opening, wherein a portion of the passivation layer at a bottom of the opening is removed.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: April 21, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jeng-Shyan Lin, Dun-Nian Yaung, Jen-Cheng Liu, Wen-De Wang, Shuang-Ji Tsai, Yueh-Chiou Lin
  • Patent number: 8987855
    Abstract: An image sensor device includes a semiconductor substrate having a front side and a backside. A first dielectric layer is on the front side of the semiconductor substrate. A metal pad is in the first dielectric layer. A second dielectric layer is over the first dielectric layer and on the front side of the semiconductor substrate. An opening penetrates through the semiconductor substrate from the backside of the semiconductor substrate, wherein the opening includes a first portion extending to expose a portion of the metal pad and a second portion extending to expose a portion of the second dielectric layer. A metal layer is formed in the first portion and the second portion of the opening.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: March 24, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jeng-Shyan Lin, Dun-Nian Yaung, Jen-Cheng Liu, Wen-De Wang, Shuang-Ji Tsai, Yueh-Chiou Lin
  • Patent number: 8969991
    Abstract: BSI image sensors and methods. In an embodiment, a substrate is provided having a sensor array and a periphery region and having a front side and a back side surface; a bottom anti-reflective coating (BARC) is formed over the back side to a first thickness, over the sensor array region and the periphery region; forming a first dielectric layer over the BARC; a metal shield is formed; selectively removing the metal shield from over the sensor array region; selectively removing the first dielectric layer from over the sensor array region, wherein a portion of the first thickness of the BARC is also removed and a remainder of the first thickness of the BARC remains during the process of selectively removing the first dielectric layer; forming a second dielectric layer over the remainder of the BARC and over the metal shield; and forming a passivation layer over the second dielectric layer.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: March 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Chuang, Dun-Nian Yaung, Jen-Cheng Liu, Wen-De Wang, Keng-Yu Chou, Shuang-Ji Tsai, Min-Feng Kao
  • Publication number: 20150052822
    Abstract: A lapping slurry and method of making the lapping slurry are provided. The lapping slurry comprises abrasive grains dispersed in a carrier. The carrier comprises water, ethylene glycol and between about 0.5 wt % to about 60 wt % surfactant. Abrasive particles are positively charged when dispersed in ethylene glycol having a pH in a range of from 5 to 9, as evidenced by zeta potentials.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 26, 2015
    Applicant: DIAMOND INNOVATIONS, INC.
    Inventor: Shuang Ji
  • Patent number: 8952497
    Abstract: A wafer includes a plurality of chips arranged as rows and columns. A first plurality of scribe lines is between the rows of the plurality of chips. Each of the first plurality of scribe lines includes a metal-feature containing scribe line comprising metal features therein, and a metal-feature free scribe line parallel to, and adjoining, the metal-feature containing scribe line. A second plurality of scribe lines is between the columns of the plurality of chips.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: February 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: U-Ting Chen, Dun-Nian Yaung, Jen-Cheng Liu, Feng-Chi Hung, Jeng-Shyan Lin, Shuang-Ji Tsai
  • Patent number: 8946849
    Abstract: A device includes a semiconductor substrate having a front side and a backside. A plurality of image sensors is disposed at the front side of the semiconductor substrate. A plurality of clear color-filters is disposed on the backside of the semiconductor substrate. A plurality of metal rings encircles the plurality of clear color-filters.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: February 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shuang-Ji Tsai, Dun-Nian Yaung, Jen-Cheng Liu, Jeng-Shyan Lin, Feng-Chi Hung
  • Patent number: 8941204
    Abstract: A method for reducing cross talk in image sensors comprises providing a backside illuminated image sensor wafer, forming an isolation region in the backside illuminated image sensor wafer, wherein the isolation region encloses a photo active region, forming an opening in the isolation region from a backside of the backside illuminated image sensor wafer and covering an upper terminal of the opening with a dielectric material to form an air gap embedded in the isolation region of the backside illuminated image sensor wafer.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: January 27, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jeng-Shyan Lin, Dun-Nian Yaung, Jen-Cheng Liu, Tzu-Hsuan Hsu, Shuang-Ji Tsai, Min-Feng Kao
  • Patent number: 8905366
    Abstract: A back frame module includes a base plate, two locking plate members, a cable organizing plate, and a stowage plate. The base plate is adapted to be provided on a rear face of a display. The locking plate members, the cable organizing plate, and the stowage plate are selectively connected to the base plate. The locking plate members are adapted for mounting of a computer device therebetween. The cable organizing plate is adapted to stow a cable of the display or of the computer device. The stowage plate is adapted to stow an adapter of the display or other accessories. The locking plate members, the cable organizing plate, and the stowage plate can be selectively substituted by a support plate. The back frame module thus has various states of use to satisfy different user requirements.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: December 9, 2014
    Assignee: Aopen, Inc.
    Inventors: Chih-Hsiung Chen, Yao-Wen Hsu, Shuang-Ji Jiang, Hong-Chang Liu, Wen-Hsi Tsai
  • Publication number: 20140264504
    Abstract: A method and apparatus for a low resistance image sensor contact, the apparatus comprising a photosensor disposed in a substrate, a first ground well disposed in a first region of the substrate, the first ground well having a resistance lower than the substrate, and a ground line disposed in a region adjacent to the first ground well. The first ground well is configured to provide a low resistance path to the ground line from the substrate for excess free carriers in the first region of the substrate. The apparatus may optionally comprise a second ground well having a lower resistance than the first ground well and disposed between the first ground well and the ground line, and may further optionally comprise a third ground well having a lower resistance than the second ground well and disposed between the second ground well and the ground line.
    Type: Application
    Filed: May 9, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Feng-Chi Hung, Chun-Chieh Chuang, Shuang-Ji Tsai, Jeng-Shyan Lin
  • Publication number: 20140264508
    Abstract: The present disclosure provides an embodiment of an image sensor structure that includes a first semiconductor substrate having a plurality of imaging sensors; a first interconnect structure formed on the first semiconductor substrate; a second semiconductor substrate having a logic circuit; a second interconnect structure formed on the second semiconductor substrate, wherein the first and the second semiconductor substrates are bonded together in a configuration that the first and second interconnect structures are sandwiched between the first and second semiconductor substrates; and a backside deep contact (BDCT) feature extended from the first interconnect structure to the second interconnect structure, thereby electrically coupling the logic circuit to the image sensors.
    Type: Application
    Filed: December 30, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Chun-Chieh Chuang, Feng-Chi Hung, Shuang-Ji Tsai, Jeng-Shyan Lin, Shu-Ting Tsai, Wen-I Hsu
  • Publication number: 20140264683
    Abstract: The present disclosure provides an embodiment of a method for fabricating a three dimensional (3D) image sensor structure. The method includes providing to an image sensor substrate having image sensors formed therein and a first interconnect structure formed thereon, and a logic substrate having a logic circuit formed therein and a first interconnect structure formed thereon; bonding the logic substrate to the image sensor substrate in a configuration that the first and second interconnect structures are sandwiched between the logic substrate and the image sensor substrate; and forming a conductive feature extending from the logic substrate to the first interconnect structure, thereby electrically coupling the logic circuit to the image sensors.
    Type: Application
    Filed: December 30, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Chun-Chieh Chuang, Feng-Chi Hung, Shu-Ting Tsai, Jeng-Shyan Lin, Shuang-Ji Tsai, Wen-I Hsu
  • Publication number: 20140252523
    Abstract: A back side image sensor and method of manufacture are provided. In an embodiment a bottom anti-reflective coating is formed over a substrate, and a metal shield layer is formed over the bottom anti-reflective coating. The metal shield layer is patterned to form a grid pattern over a sensor array region of the substrate, and a first dielectric layer and a second dielectric layer are formed to at least partially fill in openings within the grid pattern.
    Type: Application
    Filed: May 16, 2014
    Publication date: September 11, 2014
    Inventors: Chun-Chieh Chuang, Dun-Nian Yaung, Jen-Cheng Liu, Wen-De Wang, Keng-Yu Chou, Shuang-Ji Tsai, Min-Feng Kao