Patents by Inventor Shuhei Mitani

Shuhei Mitani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11967564
    Abstract: A method for manufacturing a semiconductor device includes: forming an insulating film on a surface of a semiconductor layer of a semiconductor substrate; forming a contact hole in the insulating film; forming a conductor material on the insulating film to be in contact with the semiconductor layer through the contact hole; and patterning the conductor material using an alignment key included in the conductor material.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: April 23, 2024
    Assignee: DENSO CORPORATION
    Inventors: Aiko Kaji, Haruhito Ichikawa, Shuhei Mitani, Tomohiro Mimura, Yukihiro Wakasugi, Narumasa Soejima
  • Publication number: 20230395713
    Abstract: A semiconductor device includes a semiconductor layer of a first conductivity type. A well region that is a second conductivity type well region is formed on a surface layer portion of the semiconductor layer and has a channel region defined therein. A source region that is a first conductivity type source region is formed on a surface layer portion of the well region. A gate insulating film is formed on the semiconductor layer and has a multilayer structure. A gate electrode is opposed to the channel region of the well region where a channel is formed through the gate insulating film.
    Type: Application
    Filed: August 24, 2023
    Publication date: December 7, 2023
    Applicant: ROHM CO., LTD.
    Inventors: Shuhei MITANI, Yuki NAKANO, Heiji WATANABE, Takayoshi SHIMURA, Takuji HOSOI, Takashi KIRINO
  • Patent number: 11777030
    Abstract: A semiconductor device includes a semiconductor layer of a first conductivity type. A well region that is a second conductivity type well region is formed on a surface layer portion of the semiconductor layer and has a channel region defined therein. A source region that is a first conductivity type source region is formed on a surface layer portion of the well region. A gate insulating film is formed on the semiconductor layer and has a multilayer structure. A gate electrode is opposed to the channel region of the well region where a channel is formed through the gate insulating film.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: October 3, 2023
    Assignee: ROHM CO., LTD.
    Inventors: Shuhei Mitani, Yuki Nakano, Heiji Watanabe, Takayoshi Shimura, Takuji Hosoi, Takashi Kirino
  • Patent number: 11735654
    Abstract: A silicon carbide semiconductor device includes a substrate, a drift layer disposed above the substrate, a base region disposed above the drift layer, a source region disposed above the base region, a gate trench formed deeper than the base region from a surface of the source region, a gate insulating film covering an inner wall surface of the gate trench, a gate electrode disposed on the gate insulating film, an interlayer insulating film covering the gate electrode and the gate insulating film and having a contact hole, a source electrode brought in ohmic contact with the source region through the contact hole, and a drain electrode disposed to a rear surface of the substrate. The source region has a lower impurity concentration on a side close to the base region than on a surface side brought in ohmic contact with the source region.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: August 22, 2023
    Assignee: DENSO CORPORATION
    Inventors: Aiko Kaji, Yuichi Takeuchi, Shuhei Mitani, Ryota Suzuki, Yusuke Yamashita
  • Patent number: 11610992
    Abstract: A semiconductor device includes a semiconductor layer of a first conductivity type. A well region that is a second conductivity type well region is formed on a surface layer portion of the semiconductor layer and has a channel region defined therein. A source region that is a first conductivity type source region is formed on a surface layer portion of the well region. A gate insulating film is formed on the semiconductor layer and has a multilayer structure. A gate electrode is opposed to the channel region of the well region where a channel is formed through the gate insulating film.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: March 21, 2023
    Assignee: ROHM CO., LTD.
    Inventors: Shuhei Mitani, Yuki Nakano, Heiji Watanabe, Takayoshi Shimura, Takuji Hosoi, Takashi Kirino
  • Publication number: 20220181487
    Abstract: A semiconductor device includes a semiconductor layer of a first conductivity type. A well region that is a second conductivity type well region is formed on a surface layer portion of the semiconductor layer and has a channel region defined therein. A source region that is a first conductivity type source region is formed on a surface layer portion of the well region. A gate insulating film is formed on the semiconductor layer and has a multilayer structure. A gate electrode is opposed to the channel region of the well region where a channel is formed through the gate insulating film.
    Type: Application
    Filed: February 25, 2022
    Publication date: June 9, 2022
    Inventors: Shuhei MITANI, Yuki NAKANO, Heiji WATANABE, Takayoshi SHIMURA, Takuji HOSOI, Takashi KIRINO
  • Patent number: 11348844
    Abstract: A semiconductor wafer includes a silicon carbide wafer and an epitaxial layer, which is disposed at a surface of the silicon carbide wafer and made of silicon carbide. The semiconductor wafer satisfies a condition that a waviness value is equal to or smaller than 1 micrometer. The waviness value is a sum of an absolute value of a value ? and an absolute value of a value ?. A highest height among respective heights of a plurality of points with reference to a surface reference plane within a light exposure area is denoted as the value ?. A lowest height among the respective heights of the points at the epitaxial layer with reference to the surface reference plane within the light exposure area is denoted as the value ?.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: May 31, 2022
    Assignee: DENSO CORPORATION
    Inventors: Shinya Takei, Shuhei Mitani, Haruhito Ichikawa, Ippei Takahashi, Yukihiro Wakasugi
  • Patent number: 11296223
    Abstract: A semiconductor device includes a semiconductor layer of a first conductivity type. A well region that is a second conductivity type well region is formed on a surface layer portion of the semiconductor layer and has a channel region defined therein. A source region that is a first conductivity type source region is formed on a surface layer portion of the well region. A gate insulating film is formed on the semiconductor layer and has a multilayer structure. A gate electrode is opposed to the channel region of the well region where a channel is formed through the gate insulating film.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: April 5, 2022
    Assignee: ROHM CO., LTD.
    Inventors: Shuhei Mitani, Yuki Nakano, Heiji Watanabe, Takayoshi Shimura, Takuji Hosoi, Takashi Kirino
  • Publication number: 20220045172
    Abstract: A silicon carbide semiconductor device includes a substrate, a drift layer disposed above the substrate, a base region disposed above the drift layer, a source region disposed above the base region, a gate trench formed deeper than the base region from a surface of the source region, a gate insulating film covering an inner wall surface of the gate trench, a gate electrode disposed on the gate insulating film, an interlayer insulating film covering the gate electrode and the gate insulating film and having a contact hole, a source electrode brought in ohmic contact with the source region through the contact hole, and a drain electrode disposed to a rear surface of the substrate. The source region has a lower impurity concentration on a side close to the base region than on a surface side brought in ohmic contact with the source region.
    Type: Application
    Filed: October 26, 2021
    Publication date: February 10, 2022
    Inventors: Aiko KAJI, Yuichi TAKEUCHI, Shuhei MITANI, Ryota SUZUKI, Yusuke YAMASHITA
  • Publication number: 20210399130
    Abstract: A semiconductor device includes a semiconductor layer of a first conductivity type. A well region that is a second conductivity type well region is formed on a surface layer portion of the semiconductor layer and has a channel region defined therein. A source region that is a first conductivity type source region is formed on a surface layer portion of the well region. A gate insulating film is formed on the semiconductor layer and has a multilayer structure. A gate electrode is opposed to the channel region of the well region where a channel is formed through the gate insulating film.
    Type: Application
    Filed: September 1, 2021
    Publication date: December 23, 2021
    Inventors: Shuhei MITANI, Yuki NAKANO, Heiji WATANABE, Takayoshi SHIMURA, Takuji HOSOI, Takashi KIRINO
  • Patent number: 11201216
    Abstract: A silicon carbide semiconductor device includes a substrate, a drift layer disposed above the substrate, a base region disposed above the drift layer, a source region disposed above the base region, a gate trench formed deeper than the base region from a surface of the source region, a gate insulating film covering an inner wall surface of the gate trench, a gate electrode disposed on the gate insulating film, an interlayer insulating film covering the gate electrode and the gate insulating film and having a contact hole, a source electrode brought in ohmic contact with the source region through the contact hole, and a drain electrode disposed to a rear surface of the substrate. The source region has a lower impurity concentration on a side close to the base region than on a surface side brought in ohmic contact with the source region.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: December 14, 2021
    Assignee: DENSO CORPORATION
    Inventors: Aiko Kaji, Yuichi Takeuchi, Shuhei Mitani, Ryota Suzuki, Yusuke Yamashita
  • Patent number: 11171231
    Abstract: A silicon carbide semiconductor device includes a semiconductor element with a MOS structure having: a substrate; a drift layer on the substrate; a base region on the drift layer; a source region on the base region; a trench gate structure having a gate insulation film and a gate electrode in a gate trench disposed from a surface of the source region to be deeper than the base region; an interlayer insulation film covering the gate electrode and the gate insulation film; a source electrode on the interlayer insulation film, the source region and the base region; and a drain electrode. The semiconductor element flows a current when a gate voltage is applied to the gate electrode and a channel region is provided in a portion of the base region in contact with the trench gate structure.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: November 9, 2021
    Assignee: DENSO CORPORATION
    Inventors: Shuhei Mitani, Masahiro Kumita, Narumasa Soejima
  • Publication number: 20210294663
    Abstract: An intermediate layer includes a first intermediate layer and a second intermediate layer. The first intermediate layer and the second intermediate layer each contact hardware and application software. The first intermediate layer supports the application software that transmits and receives specified information; and the second intermediate layer is capable of supporting the application software that transmits and receives unspecified information, which is not the application software that transmits and receives specified information.
    Type: Application
    Filed: March 16, 2021
    Publication date: September 23, 2021
    Inventors: Shuhei MITANI, Takashi NOGUCHI, Koichi KOJIMA, Kotaro SEIKE, Yasuhisa ISHIDA
  • Publication number: 20210280715
    Abstract: A semiconductor device includes a semiconductor layer of a first conductivity type. A well region that is a second conductivity type well region is formed on a surface layer portion of the semiconductor layer and has a channel region defined therein. A source region that is a first conductivity type source region is formed on a surface layer portion of the well region. A gate insulating film is formed on the semiconductor layer and has a multilayer structure. A gate electrode is opposed to the channel region of the well region where a channel is formed through the gate insulating film.
    Type: Application
    Filed: May 24, 2021
    Publication date: September 9, 2021
    Inventors: Shuhei MITANI, Yuki NAKANO, Heiji WATANABE, Takayoshi SHIMURA, Takuji HOSOI, Takashi KIRINO
  • Patent number: 11107911
    Abstract: A semiconductor device includes an inversion type semiconductor element, which has: a substrate; a drift layer; a saturation current suppression layer; a current dispersion layer; a base region; a source region; a connection layer; a plurality of trench gate structures; an interlayer insulation film; a source electrode; and a drain electrode. A channel region is provided in a portion of the base region in contact with each trench gate structure by applying a gate voltage to the gate electrode and applying a normal operation voltage as a drain voltage to the drain electrode; and a current flows between the source electrode and the drain electrode through the source region and the JFET portion.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: August 31, 2021
    Assignee: DENSO CORPORATION
    Inventors: Yuichi Takeuchi, Shuhei Mitani, Yasuhiro Ebihara, Yusuke Yamashita, Tadashi Misumi
  • Patent number: 11063145
    Abstract: A silicon carbide semiconductor device includes: a substrate; a first impurity region on the substrate; a base region on the first impurity region; a second impurity region in the base region; a trench gate structure including a gate insulation film and a gate electrode in a trench; a first electrode connected to the second impurity region and the base region; a second electrode on a rear surface of the substrate; a first current dispersion layer between the first impurity region and the base region; a plurality of first deep layers in the second current dispersion layer; a second current dispersion layer between the first current dispersion layer and the base region; and a second deep layer between the first current dispersion layer and the base region apart from the trench.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: July 13, 2021
    Assignee: DENSO CORPORATION
    Inventors: Shuhei Mitani, Aiko Kaji, Yasuhiro Ebihara, Tatsuji Nagaoka, Sachiko Aoi
  • Patent number: 11043589
    Abstract: A semiconductor device includes a semiconductor layer of a first conductivity type. A well region that is a second conductivity type well region is formed on a surface layer portion of the semiconductor layer and has a channel region defined therein. A source region that is a first conductivity type source region is formed on a surface layer portion of the well region. A gate insulating film is formed on the semiconductor layer and has a multilayer structure. A gate electrode is opposed to the channel region of the well region where a channel is formed through the gate insulating film.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: June 22, 2021
    Assignee: ROHM CO., LTD.
    Inventors: Shuhei Mitani, Yuki Nakano, Heiji Watanabe, Takayoshi Shimura, Takuji Hosoi, Takashi Kirino
  • Publication number: 20210151385
    Abstract: A method for manufacturing a semiconductor device includes: forming an insulating film on a surface of a semiconductor layer of a semiconductor substrate; forming a contact hole in the insulating film; forming a conductor material on the insulating film to be in contact with the semiconductor layer through the contact hole; and patterning the conductor material using an alignment key included in the conductor material.
    Type: Application
    Filed: January 27, 2021
    Publication date: May 20, 2021
    Inventors: Aiko KAJI, Haruhito ICHIKAWA, Shuhei MITANI, Tomohiro MIMURA, Yukihiro WAKASUGI, Narumasa SOEJIMA
  • Publication number: 20210143070
    Abstract: A semiconductor wafer includes a silicon carbide wafer and an epitaxial layer, which is disposed at a surface of the silicon carbide wafer and made of silicon carbide. The semiconductor wafer satisfies a condition that a waviness value is equal to or smaller than 1 micrometer. The waviness value is a sum of an absolute value of a value ? and an absolute value of a value ?. A highest height among respective heights of a plurality of points with reference to a surface reference plane within a light exposure area is denoted as the value ?. A lowest height among the respective heights of the points at the epitaxial layer with reference to the surface reference plane within the light exposure area is denoted as the value ?.
    Type: Application
    Filed: January 19, 2021
    Publication date: May 13, 2021
    Inventors: Shinya TAKEI, Shuhei MITANI, Haruhito ICHIKAWA, Ippei TAKAHASHI, Yukihiro WAKASUGI
  • Publication number: 20200411687
    Abstract: A semiconductor device includes a semiconductor layer of a first conductivity type. A well region that is a second conductivity type well region is formed on a surface layer portion of the semiconductor layer and has a channel region defined therein. A source region that is a first conductivity type source region is formed on a surface layer portion of the well region. A gate insulating film is formed on the semiconductor layer and has a multilayer structure. A gate electrode is opposed to the channel region of the well region where a channel is formed through the gate insulating film.
    Type: Application
    Filed: September 10, 2020
    Publication date: December 31, 2020
    Inventors: Shuhei MITANI, Yuki NAKANO, Heiji WATANABE, Takayoshi SHIMURA, Takuji HOSOI, Takashi KIRINO