Patents by Inventor Shyue Seng Tan

Shyue Seng Tan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10868081
    Abstract: According to various non-limiting embodiments a memory device may include a silicon-on-insulator layer having a conductivity of a first polarity, a first raised structure over the silicon-on-insulator layer, the second raised structure over the silicon-on-insulator layer, an dummy gate arranged between the first raised structure and the second raised structure, and a memory connected to the second raised structure. The first raised structure may have a conductivity of the first polarity, and the second raised structure may include a first diode layer having a conductivity of a second polarity opposite to the first polarity.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: December 15, 2020
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Wei Chang, Eng Huat Toh, Shyue Seng Tan, Ruchil Kumar Jain
  • Patent number: 10859625
    Abstract: An integrated wafer probe card with a light source facing a device under test (DUT) side and enabling methodology are provided.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: December 8, 2020
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Lanxiang Wang, Meng Yew Seah, Shyue Seng Tan, Jeffrey Chor-Keung Lam
  • Publication number: 20200381521
    Abstract: Methods of forming a ferroelectric material layer below a field plate for achieving increased Vbr with reduced Rdson and resulting devices are provided. Embodiments include forming a N-Drift in a portion of the Si layer formed in a portion of a p-sub; forming an oxide layer over portions of the Si layer and the N-Drift; forming a gate over a portion of the oxide layer; forming a S/D extension region in the Si layer; forming first and second spacers on opposite sides of the gate and the oxide layer; forming a S/D region in the Si layer adjacent to the S/D extension region and a S/D region in the N-Drift remote from the Si layer; forming a U-shaped ferroelectric material layer over the oxide layer and the N-Drift, proximate or adjacent to the gate; and filling the U-shaped ferroelectric material layer with a metal, a field gate formed.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Inventors: Eng Huat TOH, Shyue Seng TAN, Elgin Kiok Boone QUEK
  • Patent number: 10847720
    Abstract: Structures for a non-volatile memory and methods of forming and using such structures. A resistive memory element includes a first electrode, a second electrode, and a switching layer arranged between the first electrode and the second electrode. A transistor includes a drain coupled with the second electrode. The switching layer has a top surface, and the first electrode is arranged on a first portion of the top surface of the switching layer. A hardmask, which is composed of a dielectric material, is arranged on a second portion of the top surface of the switching layer.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: November 24, 2020
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Desmond Jia Jun Loy, Eng Huat Toh, Bin Liu, Shyue Seng Tan
  • Patent number: 10840253
    Abstract: Devices and methods of forming a device are disclosed. The device includes a substrate defined with at least a device region. A multi-gate transistor disposed in the device region which includes first and second gates both having first and second gate sidewalls. The multi-gate transistor also includes first source/drain (S/D) regions disposed adjacent to the first gate sidewall of the first and second gate, a common second S/D region disposed adjacent to the second gate sidewall of the first and second gate. A negative capacitance element is disposed within the second gate to reduce total overlap capacitance of the transistor. An interlevel dielectric (ILD) layer is disposed over the substrate and covering the transistor. First and second contacts are disposed in the ILD layer which are coupled to the first and second S/D regions respectively.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: November 17, 2020
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Shyue Seng Tan, Kiok Boone Elgin Quek, Eng Huat Toh
  • Patent number: 10830731
    Abstract: A sensor device may include a substrate, and first and second semiconductor structures arranged over the substrate. The first semiconductor structure may be an ion-sensitive field effect transistor and may include a floating gate, and a sensing element electrically coupled to the floating gate. The second semiconductor structure may be capacitively coupled to the first semiconductor structure, and may include a first diffusion region and a second diffusion region having opposite polarity type dopants, and a channel region arranged therebetween. The second semiconductor structure may be configured to receive a bias voltage to tune an electrical characteristic of the first semiconductor structure through the first diffusion region and the second diffusion region and the channel region. In some embodiments, the substrate may be a crystalline-on-insulator substrate which may be coupled to a back gate bias to reduce an effective total capacitance of the ISFET and further improve the coupling ratio.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: November 10, 2020
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Xinshu Cai, Shyue Seng Tan, Eng Huat Toh
  • Patent number: 10825984
    Abstract: Structures for a sensor and methods of forming such structures. A sensing element includes a free magnetic layer, a pinned magnetic layer, and a non-magnetic conductive spacer layer between the free magnetic layer and the pinned magnetic layer. A dummy element is positioned outside of an outer boundary of the sensing element. The dummy element is detached from the sensing element.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: November 3, 2020
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Ping Zheng, Eng Huat Toh, Samarth Agarwal, Lanxiang Wang, Shyue Seng Tan, Ruchil Kumar Jain
  • Publication number: 20200335552
    Abstract: According to various non-limiting embodiments a memory device may include a silicon-on-insulator layer having a conductivity of a first polarity, a first raised structure over the silicon-on-insulator layer, the second raised structure over the silicon-on-insulator layer, an dummy gate arranged between the first raised structure and the second raised structure, and a memory connected to the second raised structure. The first raised structure may have a conductivity of the first polarity, and the second raised structure may include a first diode layer having a conductivity of a second polarity opposite to the first polarity.
    Type: Application
    Filed: April 18, 2019
    Publication date: October 22, 2020
    Inventors: Wei CHANG, Eng Huat TOH, Shyue Seng TAN, Ruchil Kumar JAIN
  • Patent number: 10804323
    Abstract: Memory devices and manufacturing methods thereof are presented. A memory device a substrate and a memory cell having at least one selector and a storage element. The selector includes a well of a first polarity type disposed in the substrate, a region of a second polarity type disposed over the well and in the substrate, and first and second regions of the first polarity type disposed adjacent to the region of the second polarity type. The storage element includes a programmable resistive layer disposed on the region of the second polarity type and an electrode disposed over the programmable resistive layer.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: October 13, 2020
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Xuan Anh Tran, Eng Huat Toh, Shyue Seng Tan, Yuan Sun, Elgin Kiok Boone Quek
  • Publication number: 20200321396
    Abstract: Integrated circuits and methods of producing the same are provided. In an exemplary embodiment, an integrated circuit includes a memory cell, wherein the memory cell includes a transistor having a source and a drain, a first resistive unit in electrical communication with the source, and a second resistive unit in electrical communication with the drain. The first resistive unit includes a first bottom electrode, a first top electrode, and a first resistive element positioned between the first bottom electrode and the first top electrode. The second resistive unit includes a second bottom electrode, a second top electrode, and a second resistive element positioned between the second bottom electrode and the second top electrode.
    Type: Application
    Filed: April 5, 2019
    Publication date: October 8, 2020
    Inventors: Lanxiang Wang, Shyue Seng Tan, Eng Huat Toh
  • Patent number: 10790366
    Abstract: Methods of forming a ferroelectric material layer below a field plate for achieving increased Vbr with reduced Rdson and resulting devices are provided. Embodiments include forming a N-Drift in a portion of the Si layer formed in a portion of a p-sub; forming an oxide layer over portions of the Si layer and the N-Drift; forming a gate over a portion of the oxide layer; forming a S/D extension region in the Si layer; forming first and second spacers on opposite sides of the gate and the oxide layer; forming a S/D region in the Si layer adjacent to the S/D extension region and a S/D region in the N-Drift remote from the Si layer; forming a U-shaped ferroelectric material layer over the oxide layer and the N-Drift, proximate or adjacent to the gate; and filling the U-shaped ferroelectric material layer with a metal, a field gate formed.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: September 29, 2020
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Eng Huat Toh, Shyue Seng Tan, Elgin Kiok Boone Quek
  • Publication number: 20200295161
    Abstract: Methods of forming a compact FDSOI OTP/MTP cell and a compact FinFET OTP/MTP cell and the resulting devices are provided. Embodiments include forming a SOI region or a fin over a BOX layer over a substrate; forming a first and a second gate stack, laterally separated, over respective portions of the SOI region or the fin; forming a first and a second liner along each first and second sidewall and of the first and the second gate stack, respectively, the second sidewall over respective portions of the SOI region or the fin; forming a spacer on each first and second liner; forming a S/D region in the SOI region or the fin between the first and the second gate stack; forming a CA over the S/D region; utilizing each gate of the first gate stack and the second gate stack as a WL; and connecting a BL to the CA.
    Type: Application
    Filed: May 28, 2020
    Publication date: September 17, 2020
    Inventors: Eng Huat TOH, Shyue Seng TAN, Elgin Kiok Boone QUEK
  • Patent number: 10763427
    Abstract: A method of forming a 3D Hall effect sensor and the resulting device are provided. Embodiments include forming a p-type well in a substrate; forming a first n-type well in a first region surrounded by the p-type well in top view; forming a second n-type well in a second region surrounding the p-type well; implanting n-type dopant in the first and second n-type wells; and implanting p-type dopant in the p-type well and the first n-type well.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: September 1, 2020
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Eng Huat Toh, Ruchil Kumar Jain, Yongshun Sun, Shyue Seng Tan
  • Patent number: 10762966
    Abstract: A device having at least one memory cell over a substrate is provided. The at least one memory cell includes a source region and a drain region in the substrate, and a first gate and a second gate over the substrate. The first and second gates are arranged between the source region and the drain region. The first and second gate are separated by an intergate dielectric. The first gate is configured as a select gate and erase gate of the at least one memory cell, and the second gate is configured as a storage gate of the at least one memory cell. The second gate comprises a floating gate and a control gate over the floating gate. The device further includes source/drain (S/D) contacts extending from the source region and the drain region. The source region and the drain region are coupled to either one of a source line (SL) or a bit line (BL) through the S/D contacts.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: September 1, 2020
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Xinshu Cai, Shyue Seng Tan, Kiok Boone Elgin Quek
  • Patent number: 10746694
    Abstract: Integrated circuits and methods of producing the same are provided. In an exemplary embodiment, an integrated circuit includes a detection layer, a substrate, and a transistor having a transistor gate electrode, a transistor source, and a transistor drain. A capacitor gate electrode overlies the substrate, where the capacitor gate electrode and the transistor gate electrode are electrically connected with each other and with the detection layer. A capacitor well is defined within the substrate, and a gate insulator is positioned between the capacitor well and the capacitor gate electrode. A capacitor includes the capacitor gate electrode, the gate insulator, and the capacitor well.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: August 18, 2020
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Eng Huat Toh, Bin Liu, Shyue Seng Tan, Kiok Boone Elgin Quek
  • Patent number: 10724983
    Abstract: A sensor device may include a substrate, first and second source regions, first and second drain regions, first and second channel regions, and first and second gate structures disposed over the first and second channel regions, respectively. The source regions and drain regions may be at least partially disposed within the substrate. The first and second source regions may have first and second source resistances, respectively, and the second source resistance may be higher than the first source resistance. The first gate structure may receive a solution, and a change in pH in the solution may cause a change in a first current flow through the first channel region. In turn, the second current flow through the second channel region may change to compensate for the change in the first current flow to maintain a constant current flow through the sensor device.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: July 28, 2020
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Bin Liu, Eng Huat Toh, Shyue Seng Tan, Ming Tsang Tsai, Khee Yong Lim, Kiok Boone Elgin Quek
  • Publication number: 20200235106
    Abstract: An anti-fuse memory cell may include a substrate including first and second conductivity regions and an isolation region at least partially within the substrate, a program gate over the substrate, a program gate oxide layer over the isolation region and between the program gate and the substrate, a first channel region arranged laterally between the first conductivity region and the isolation region, a second channel region arranged laterally between the second conductivity region and the isolation region, a first select gate arranged over the substrate and over the first channel region and a second select gate arranged over the substrate and over the second channel region. The program gate oxide layer may be configured to break down to allow conduction between the program gate and at least one of the channel regions upon providing a program voltage difference between the program gate and at least one of the channel regions.
    Type: Application
    Filed: January 18, 2019
    Publication date: July 23, 2020
    Inventors: Xinshu CAI, Shyue Seng TAN, Eng Huat TOH
  • Patent number: 10720513
    Abstract: Methods of forming a compact FDSOI OTP/MTP cell and a compact FinFET OTP/MTP cell and the resulting devices are provided. Embodiments include forming a SOI region or a fin over a BOX layer over a substrate; forming a first and a second gate stack, laterally separated, over respective portions of the SOI region or the fin; forming a first and a second liner along each first and second sidewall and of the first and the second gate stack, respectively, the second sidewall over respective portions of the SOI region or the fin; forming a spacer on each first and second liner; forming a S/D region in the SOI region or the fin between the first and the second gate stack; forming a CA over the S/D region; utilizing each gate of the first gate stack and the second gate stack as a WL; and connecting a BL to the CA.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: July 21, 2020
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Eng Huat Toh, Shyue Seng Tan, Elgin Kiok Boone Quek
  • Publication number: 20200227424
    Abstract: One illustrative MPT device disclosed herein includes an active region and an inactive region, isolation material positioned between the active region and the inactive region, the isolation material electrically isolating the active region from the inactive region, and an FG MTP cell formed in the active region. In this example, the FG MTP cell includes a floating gate, wherein first, second and third portions of the floating gate are positioned above the active region, the inactive region and the isolation material, respectively, and a control gate positioned above at least a portion of the inactive region, wherein the control gate is positioned above an upper surface and adjacent opposing sidewall surfaces of at least a part of the second portion of the floating gate.
    Type: Application
    Filed: January 14, 2019
    Publication date: July 16, 2020
    Inventors: Xuan Anh Tran, Sunil Kumar Singh, Shyue Seng Tan
  • Patent number: 10707408
    Abstract: Methods of forming a high sensitivity Hall effect sensor having a thin Hall plate and the resulting devices are provided. Embodiments include providing a SOI substrate having a sequentially formed Si substrate and BOX and Si layers; forming a first STI structure in a first portion of the Si layer above the BOX layer, the first STI structure having a cross-shaped pattern; forming a second STI structure in a frame-shaped pattern in a second portion of the Si layer; the second STI structure formed outside and adjacent to the first STI structure; removing a portion of the Si layer between the first and second STI structures down to the BOX layer; removing the first STI structure, a cross-shaped Si layer remaining; and implanting N+ dopant ions into each end of the cross-shaped Si layer to form N+ implantation regions.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: July 7, 2020
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Shyue Seng Tan, Eng Huat Toh