Patents by Inventor Simon Forey

Simon Forey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11876649
    Abstract: Equalization circuitry for a data channel in an integrated circuit device includes an analog equalization stage coupled to the data channel, and a digital signal processing stage downstream of the analog equalization stage. The digital signal processing stage generates control signals to control the analog equalization stage, and includes a digital equalization stage that operates on output of the analog equalization stage. The analog equalization stage may further include an enhanced processing stage for optical signals, which may be selectably coupled to the analog equalization stage. The analog equalization stage may include at least one feed-forward or feedback equalization stage, and a decision stage that outputs decision signals at one of a first plurality of signal levels. The enhanced processing stage operates on the decision signals to output enhanced decision signals at one of a second plurality of signal levels of higher resolution than the first plurality of signal levels.
    Type: Grant
    Filed: January 20, 2022
    Date of Patent: January 16, 2024
    Assignee: Marvell Asia Pte Ltd
    Inventors: Luke Wang, Benjamin Smith, Basel Alnabulsi, Stephane Dallaire, Simon Forey, Karthik Raviprakash, Praveen Prabha, Benjamin T. Reyes
  • Patent number: 11757355
    Abstract: The present invention is directed to electrical circuits. According to an embodiment, the present invention provides a charge pump circuit with a bias section and a switch section. The switch section includes a first switch coupled to an early signal and a second switch coupled to a late signal. The charge pump additionally includes a low-pass filter. The switch section includes a first resistor and a second resistor. The first resistor is directly coupled to the first switch and the low-pass filter. The second resistor is directly coupled to the second switch and the first resistor. There are other embodiments as well.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: September 12, 2023
    Assignee: Marvell Asia Pte, Ltd.
    Inventors: Rajasekhar Nagulapalli, Simon Forey, Parmanand Mishra
  • Publication number: 20230037860
    Abstract: Equalization circuitry for a data channel in an integrated circuit device includes an analog equalization stage coupled to the data channel, and a digital signal processing stage downstream of the analog equalization stage. The digital signal processing stage generates control signals to control the analog equalization stage, and includes a digital equalization stage that operates on output of the analog equalization stage. The analog equalization stage may further include an enhanced processing stage for optical signals, which may be selectably coupled to the analog equalization stage. The analog equalization stage may include at least one feed-forward or feedback equalization stage, and a decision stage that outputs decision signals at one of a first plurality of signal levels. The enhanced processing stage operates on the decision signals to output enhanced decision signals at one of a second plurality of signal levels of higher resolution than the first plurality of signal levels.
    Type: Application
    Filed: January 20, 2022
    Publication date: February 9, 2023
    Inventors: Luke Wang, Benjamin Smith, Basel Alnabulsi, Stephane Dallaire, Simon Forey, Karthik Raviprakash, Praveen Prabha, Benjamin T. Reyes
  • Publication number: 20200403503
    Abstract: The present invention is directed to electrical circuits. According to an embodiment, the present invention provides a charge pump circuit with a bias section and a switch section. The switch section includes a first switch coupled to an early signal and a second switch coupled to a late signal. The charge pump additionally includes a low-pass filter. The switch section includes a first resistor and a second resistor. The first resistor is directly coupled to the first switch and the low-pass filter. The second resistor is directly coupled to the second switch and the first resistor. There are other embodiments as well.
    Type: Application
    Filed: September 8, 2020
    Publication date: December 24, 2020
    Inventors: Rajasekhar NAGULAPALLI, Simon FOREY, Parmanand MISHRA
  • Patent number: 10804797
    Abstract: The present invention is directed to electrical circuits. According to an embodiment, the present invention provides a charge pump circuit with a bias section and a switch section. The switch section includes a first switch coupled to an early signal and a second switch coupled to a late signal. The charge pump additionally includes a low-pass filter. The switch section includes a first resistor and a second resistor. The first resistor is directly coupled to the first switch and the low-pass filter. The second resistor is directly coupled to the second switch and the first resistor. There are other embodiments as well.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: October 13, 2020
    Assignee: INPHI CORPORATION
    Inventors: Rajasekhar Nagulapalli, Simon Forey, Parmanand Mishra
  • Patent number: 10771065
    Abstract: The present invention is directed to electrical circuits. More specifically, embodiments of the present invention provide a charge pump, which can be utilized as a part of a clock data recovery device. Early and late signals are used as differential switching voltage signals in the charge pump. The first switch and a second switch are used for controlling the direction of the current flowing into the loop filter. Input differential voltages to the switches are being generated with an opamp negative feedback loop. The output voltage of the first switch and the second switch is used in conjunction with a resistor to generate a charge pump current. There are other embodiments as well.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: September 8, 2020
    Assignee: INPHI CORPORATION
    Inventors: Simon Forey, Parmanand Mishra, Michael S. Harwood, Rajasekhar Nagulapalli
  • Patent number: 10763810
    Abstract: The present invention is directed to electrical circuits and techniques thereof. In various embodiments, the present invention provides a variable gain amplifier architecture that includes a continuous-time linear equalizer (CTLE) section and a variable gain amplifier (VGA) section. The CTLE section provides both a pair of equalized data signals and a common mode voltage. A DAC generates a control signal based on a control code. The VGA section amplifies the pair of equalized data signals by an amplification factor using a transistor whose resistance value is based on both the common mode voltage and the control signal. There are other embodiments as well.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: September 1, 2020
    Assignee: INPHI CORPORATION
    Inventors: Simon Forey, Rajasekhar Nagulapalli, Parmanand Mishra
  • Patent number: 10764092
    Abstract: The present invention is directed to communication systems and electrical circuits. According to an embodiment, an input termination circuit includes a first attenuation resistor and a second attenuation resistor. The resistance values of these two resistors are adjusted in opposite directions to maintain a stable output impedance. There are other embodiments as well.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: September 1, 2020
    Assignee: INPHI CORPORATION
    Inventors: Simon Forey, Rajasekhar Nagulapalli, Parmanand Mishra
  • Publication number: 20200204131
    Abstract: The present invention is directed to electrical circuits and techniques thereof. In various embodiments, the present invention provides a variable gain amplifier architecture that includes a continuous-time linear equalizer (CTLE) section and a variable gain amplifier (VGA) section. The CTLE section provides both a pair of equalized data signals and a common mode Voltage. A DAC generates a control signal based on a control code. The VGA section amplifies the pair of equalized data signals by an amplification factor using a transistor whose resistance value is based on both the common mode voltage and the control signal. There are other embodiments as well.
    Type: Application
    Filed: March 5, 2020
    Publication date: June 25, 2020
    Inventors: Simon FOREY, Rajasekhar NAGULAPALLI, Parmanand MISHRA
  • Patent number: 10622955
    Abstract: The present invention is directed to electrical circuits and techniques thereof. In various embodiments, the present invention provides a variable gain amplifier architecture that includes a continuous-time linear equalizer (CTLE) section and a variable gain amplifier (VGA) section. The CTLE section provides both a pair of equalized data signals and a common mode voltage. A DAC generates a control signal based on a control code. The VGA section amplifies the pair of equalized data signals by an amplification factor using a transistor whose resistance value is based on both the common mode voltage and the control signal. There are other embodiments as well.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: April 14, 2020
    Assignee: INPHI CORPORATION
    Inventors: Simon Forey, Rajasekhar Nagulapalli, Parmanand Mishra
  • Publication number: 20200084067
    Abstract: The present invention is directed to communication systems and electrical circuits. According to an embodiment, an input termination circuit includes a first attenuation resistor and a second attenuation resistor. The resistance values of these two resistors are adjusted in opposite directions to maintain a stable output impedance. There are other embodiments as well.
    Type: Application
    Filed: November 12, 2019
    Publication date: March 12, 2020
    Inventors: Simon FOREY, Rajasekhar NAGULAPALLI, Parmanand MISHRA
  • Publication number: 20200059348
    Abstract: The present invention is directed to electrical circuits. More specifically, embodiments of the present invention provide a charge pump, which can be utilized as a part of a clock data recovery device. Early and late signals are used as differential switching voltage signals in the charge pump. The first switch and a second switch are used for controlling the direction of the current flowing into the loop filter. Input differential voltages to the switches are being generated with an opamp negative feedback loop. The output voltage of the first switch and the second switch is used in conjunction with a resistor to generate a charge pump current. There are other embodiments as well.
    Type: Application
    Filed: October 25, 2019
    Publication date: February 20, 2020
    Inventors: Simon FOREY, Parmanand MISHRA, Michael S. HARWOOD, Rajasekhar NAGULAPALLI
  • Patent number: 10505766
    Abstract: The present invention is directed to communication systems and electrical circuits. According to an embodiment, an input termination circuit includes a first attenuation resistor and a second attenuation resistor. The resistance values of these two resistors are adjusted in opposite directions to maintain a stable output impedance. There are other embodiments as well.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: December 10, 2019
    Assignee: INPHI CORPORATION
    Inventors: Simon Forey, Rajasekhar Nagulapalli, Parmanand Mishra
  • Patent number: 10498526
    Abstract: The present invention is directed to electrical circuits. More specifically, embodiments of the present invention provide a charge pump, which can be utilized as a part of a clock data recovery device. Early and late signals are used as differential switching voltage signals in the charge pump. The first switch and a second switch are used for controlling the direction of the current flowing into the loop filter. Input differential voltages to the switches are being generated with an opamp negative feedback loop. The output voltage of the first switch and the second switch is used in conjunction with a resistor to generate a charge pump current. There are other embodiments as well.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: December 3, 2019
    Assignee: INPHI CORPORATION
    Inventors: Simon Forey, Parmanand Mishra, Michael S. Harwood, Rajasekhar Nagulapalli
  • Publication number: 20190207576
    Abstract: The present invention is directed to electrical circuits and techniques thereof. In various embodiments, the present invention provides a variable gain amplifier architecture that includes a continuous-time linear equalizer (CTLE) section and a variable gain amplifier (VGA) section. The CTLE section provides both a pair of equalized data signals and a common mode voltage. A DAC generates a control signal based on a control code. The VGA section amplifies the pair of equalized data signals by an amplification factor using a transistor whose resistance value is based on both the common mode voltage and the control signal. There are other embodiments as well.
    Type: Application
    Filed: March 6, 2019
    Publication date: July 4, 2019
    Inventors: Simon FOREY, Rajasekhar NAGULAPALLI, Parmanand MISHRA
  • Patent number: 10333527
    Abstract: Embodiments of the present invention provide techniques for duty cycle correction of clock signals. An input clock signal passes through a pair of output transistors, which provides an output clock signal based on the input clock signal. A duty cycle sensor generates a first correction signal based on the output clock signal. The first correction signal is at least partially opposite of the output clock signal. A duty cycle corrector generates a second correction signal based on the first correction signal. The duty cycle corrector includes two or more transistors for generating the second correction signal. The second correction signal is applied to the output clock signal. There are other embodiments as well.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: June 25, 2019
    Assignee: INPHI CORPORATION
    Inventors: Simon Forey, Rajasekhar Nagulapalli, Parmanand Mishra
  • Patent number: 10284394
    Abstract: The present invention is directed to communication systems and electrical circuits. According to an embodiment, an input termination circuit includes a first attenuation resistor and a second attenuation resistor. The resistance values of these two resistors are adjusted in opposite directions to maintain a stable output impedance. There are other embodiments as well.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: May 7, 2019
    Assignee: INPHI CORPORATION
    Inventors: Simon Forey, Rajasekhar Nagulapalli, Parmanand Mishra
  • Patent number: 10270409
    Abstract: The present invention is directed to electrical circuits and techniques thereof. In various embodiments, the present invention provides a variable gain amplifier architecture that includes a continuous-time linear equalizer (CTLE) section and a variable gain amplifier (VGA) section. The CTLE section provides both a pair of equalized data signals and a common mode voltage. A DAC generates a control signal based on a control code. The VGA section amplifies the pair of equalized data signals by an amplification factor using a transistor whose resistance value is based on both the common mode voltage and the control signal. There are other embodiments as well.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: April 23, 2019
    Assignee: INPHI CORPORATION
    Inventors: Simon Forey, Rajasekhar Nagulapalli, Parmanand Mishra
  • Patent number: 10243570
    Abstract: The present invention is directed to electrical circuits. More specifically, embodiments of the present invention provide a charge pump, which can be utilized as a part of a clock data recovery device. Early and late signals are used as differential switching voltage signals in the charge pump. The first switch and a second switch are used for controlling the direction of the current flowing into the loop filter. Input differential voltages to the switches are being generated with an opamp negative feedback loop. The output voltage of the first switch and the second switch is used in conjunction with a resistor to generate a charge pump current. There are other embodiments as well.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: March 26, 2019
    Assignee: INPHI CORPORATION
    Inventors: Simon Forey, Parmanand Mishra, Michael Harwood, Rajasekhar Nagulapalli
  • Publication number: 20190044521
    Abstract: Embodiments of the present invention provide techniques for duty cycle correction of clock signals. An input clock signal passes through a pair of output transistors, which provides an output clock signal based on the input clock signal. A duty cycle sensor generates a first correction signal based on the output clock signal. The first correction signal is at least partially opposite of the output clock signal. A duty cycle corrector generates a second correction signal based on the first correction signal. The duty cycle corrector includes two or more transistors for generating the second correction signal. The second correction signal is applied to the output clock signal. There are other embodiments as well.
    Type: Application
    Filed: October 8, 2018
    Publication date: February 7, 2019
    Inventors: Simon FOREY, Rajasekhar NAGULAPALLI, Parmanand MISHRA