Patents by Inventor Simon Forey

Simon Forey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10193640
    Abstract: The present invention is directed to data communication. According to a specific embodiment, the present invention provides technique for loss of signal detection. A loss-of-signal detection (LOSD) device determines an analog signal indicating signal strength by subtracting a threshold offset voltage from an incoming signal. The analog signal is then processed by a switch network of an output stage circuit, which provides a digital output of loss of signal indication at a low frequency (relative to the incoming signal frequency). There are other embodiments as well.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: January 29, 2019
    Assignee: INPHI CORPORATION
    Inventors: Simon Forey, Rajasekhar Nagulapalli, Parmanand Mishra, Michael S. Harwood
  • Patent number: 10193515
    Abstract: The present invention is directed to electrical circuits. More specifically, embodiments of the presentation provide a CTLE module that includes a two compensation sections. A high-frequency zero RC section is in the source of the differential pair and close to the bias current source. A low-frequency zero section is coupled to an output terminal and configured outside the input signal path. A DC gain tuning section is coupled to the low-frequency zero section. There are other embodiments as well.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: January 29, 2019
    Assignee: INPHI CORPORATION
    Inventors: Rajasekhar Nagulapalli, Simon Forey, Parmanand Mishra
  • Publication number: 20180351524
    Abstract: The present invention is directed to electrical circuits. More specifically, embodiments of the presentation provide a CTLE module that includes a two compensation sections. A high-frequency zero RC section is in the source of the differential pair and close to the bias current source. A low-frequency zero section is coupled to an output terminal and configured outside the input signal path. A DC gain tuning section is coupled to the low-frequency zero section. There are other embodiments as well.
    Type: Application
    Filed: August 10, 2018
    Publication date: December 6, 2018
    Inventors: Rajasekhar NAGULAPALLI, Simon FOREY, Parmanand MISHRA
  • Publication number: 20180331817
    Abstract: The present invention is directed to data communication. More specifically, an embodiment of the present invention provides a technique for detecting loss of signal. An incoming data stream is sampled and a recovered clock signal is generated accordingly. An output clock signal of a higher frequency than the recovered clock signal is generated by a transmission PLL. The frequency of the recovered clock signal is compared to a divided frequency of the output clock signal. If a difference between the recovered clock signal and the output clock signal is greater than a threshold, a loss of signal indication is provided. There are other embodiments as well.
    Type: Application
    Filed: July 5, 2018
    Publication date: November 15, 2018
    Inventors: Parmanand MISHRA, Simon FOREY
  • Patent number: 10129017
    Abstract: The present invention is directed to data communication. More specifically, an embodiment of the present invention provides a technique for detecting loss of signal. An incoming data stream is sampled and a recovered clock signal is generated accordingly. An output clock signal of a higher frequency than the recovered clock signal is generated by a transmission PLL. The frequency of the recovered clock signal is compared to a divided frequency of the output clock signal. If a difference between the recovered clock signal and the output clock signal is greater than a threshold, a loss of signal indication is provided. There are other embodiments as well.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: November 13, 2018
    Assignee: INPHI CORPORATION
    Inventors: Parmanand Mishra, Simon Forey
  • Patent number: 10122335
    Abstract: The present invention is directed to electrical circuits and techniques thereof. More specifically, an embodiment of the present invention provides a line driver with transistors directly coupled to the ground, and a bias voltage is coupled common mode resistors of the line driver. There are other embodiments as well.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: November 6, 2018
    Assignee: INPHI CORPORATION
    Inventors: Rajasekhar Nagulapalli, Simon Forey, Parmanand Mishra
  • Patent number: 10122368
    Abstract: Embodiments of the present invention provide techniques for duty cycle correction of clock signals. An input clock signal passes through a pair of output transistors, which provides an output clock signal based on the input clock signal. A duty cycle sensor generates a first correction signal based on the output clock signal. The first correction signal is at least partially opposite of the output clock signal. A duty cycle corrector generates a second correction signal based on the first correction signal. The duty cycle corrector includes two or more transistors for generating the second correction signal. The second correction signal is applied to the output clock signal. There are other embodiments as well.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: November 6, 2018
    Assignee: INPHI CORPORATION
    Inventors: Simon Forey, Rajasekhar Nagulapalli, Parmanand Mishra
  • Patent number: 10103698
    Abstract: The present invention is directed to electrical circuits and techniques thereof. More specifically, embodiments of the present invention provide a differential amplifier that has a differential amplifier section, a current source, and a feedback section. The differential amplifier section comprises NMOS transistors that receives two voltage inputs and generate a differential output. The current source provides a long tail for the differential amplifier section. The feedback section generates a feedback voltage based on a reference bias voltage. The feedback voltage is used by an amplifier to control the current source and to keep the biasing and gain of the differential amplifier substantially constant. There are other embodiments as well.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: October 16, 2018
    Assignee: INPHI CORPORATION
    Inventors: Rajasekhar Nagulapalli, Simon Forey, Parmanand Mishra
  • Publication number: 20180294899
    Abstract: The present invention is directed to data communication. According to a specific embodiment, the present invention provides technique for loss of signal detection. A loss-of-signal detection (LOSD) device determines an analog signal indicating signal strength by subtracting a threshold offset voltage from an incoming signal. The analog signal is then processed by a switch network of an output stage circuit, which provides a digital output of loss of signal indication at a low frequency (relative to the incoming signal frequency). There are other embodiments as well.
    Type: Application
    Filed: May 31, 2018
    Publication date: October 11, 2018
    Inventors: Simon FOREY, Rajasekhar NAGULAPALLI, Parmanand MISHRA, Michael S. HARWOOD
  • Patent number: 10044497
    Abstract: The present invention is directed to data communication. More specifically, an embodiment of the present invention provides a technique for detecting loss of signal. An incoming data stream is sampled and a recovered clock signal is generated accordingly. An output clock signal of a higher frequency than the recovered clock signal is generated by a transmission PLL. The frequency of the recovered clock signal is compared to a divided frequency of the output clock signal. If a difference between the recovered clock signal and the output clock signal is greater than a threshold, a loss of signal indication is provided. There are other embodiments as well.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: August 7, 2018
    Assignee: INPHI CORPORATION
    Inventors: Parmanand Mishra, Simon Forey
  • Patent number: 10014965
    Abstract: The present invention is directed to data communication. According to a specific embodiment, the present invention provides technique for loss of signal detection. A loss-of-signal detection (LOSD) device determines an analog signal indicating signal strength by subtracting a threshold offset voltage from an incoming signal. The analog signal is then processed by a switch network of an output stage circuit, which provides a digital output of loss of signal indication at a low frequency (relative to the incoming signal frequency). There are other embodiments as well.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: July 3, 2018
    Assignee: INPHI CORPORATION
    Inventors: Simon Forey, Rajasekhar Nagulapalli, Parmanand Mishra, Michael S. Harwood
  • Publication number: 20180183444
    Abstract: Embodiments of the present invention provide techniques for duty cycle correction of clock signals. An input clock signal passes through a pair of output transistors, which provides an output clock signal based on the input clock signal. A duty cycle sensor generates a first correction signal based on the output clock signal. The first correction signal is at least partially opposite of the output clock signal. A duty cycle corrector generates a second correction signal based on the first correction signal. The duty cycle corrector includes two or more transistors for generating the second correction signal. The second correction signal is applied to the output clock signal. There are other embodiments as well.
    Type: Application
    Filed: December 13, 2017
    Publication date: June 28, 2018
    Inventors: Simon FOREY, Rajasekhar NAGULAPALLI, Parmanand MISHRA
  • Publication number: 20180069514
    Abstract: The present invention is directed to electrical circuits and techniques thereof. More specifically, an embodiment of the present invention provides a line driver with transistors directly coupled to the ground, and a bias voltage is coupled common mode resistors of the line driver. There are other embodiments as well.
    Type: Application
    Filed: November 13, 2017
    Publication date: March 8, 2018
    Inventors: Rajasekhar NAGULAPALLI, Simon FOREY, Parmanand MISHRA
  • Patent number: 9882570
    Abstract: Embodiments of the present invention provide techniques for duty cycle correction of clock signals. An input clock signal passes through a pair of output transistors, which provides an output clock signal based on the input clock signal. A duty cycle sensor generates a first correction signal based on the output clock signal. The first correction signal is at least partially opposite of the output clock signal. A duty cycle corrector generates a second correction signal based on the first correction signal. The duty cycle corrector includes two or more transistors for generating the second correction signal. The second correction signal is applied to the output clock signal. There are other embodiments as well.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: January 30, 2018
    Assignee: INPHI CORPORATION
    Inventors: Simon Forey, Rajasekhar Nagulapalli, Parmanand Mishra
  • Publication number: 20170366147
    Abstract: The present invention is directed to electrical circuits and techniques thereof. More specifically, embodiments of the present invention provide a differential amplifier that has a differential amplifier section, a current source, and a feedback section. The differential amplifier section comprises NMOS transistors that receives two voltage inputs and generate a differential output. The current source provides a long tail for the differential amplifier section. The feedback section generates a feedback voltage based on a reference bias voltage. The feedback voltage is used by an amplifier to control the current source and to keep the biasing and gain of the differential amplifier substantially constant. There are other embodiments as well.
    Type: Application
    Filed: June 26, 2017
    Publication date: December 21, 2017
    Inventors: Rajasekhar NAGULAPALLI, Simon FOREY, Parmanand MISHRA
  • Patent number: 9847762
    Abstract: The present invention is directed to electrical circuits and techniques thereof. More specifically, an embodiment of the present invention provides a line driver with transistors directly coupled to the ground, and a bias voltage is coupled common mode resistors of the line driver. There are other embodiments as well.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: December 19, 2017
    Assignee: INPHI CORPORATION
    Inventors: Rajasekhar Nagulapalli, Simon Forey, Parmanand Mishra
  • Patent number: 9742551
    Abstract: The present application is directed to data communication. More specifically, embodiments of the present invention provide a SerDes system that includes multiple communication lanes that are aligned using a clock signal. Each of the communication lanes comprises a receiver, a buffer, and a transmitter. The receiver uses multiple sampling lanes for data sampling and clock recovery. Sampled data are stored at the buffer and transmitted by the transmitter. There are other embodiments as well.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: August 22, 2017
    Assignee: INPHI CORPORATION
    Inventors: Simon Forey, Parmanand Mishra
  • Patent number: 9722555
    Abstract: The present invention is directed to electrical circuits and techniques thereof. More specifically, embodiments of the present invention provide a differential amplifier that has a differential amplifier section, a current source, and a feedback section. The differential amplifier section comprises NMOS transistors that receives two voltage inputs and generate a differential output. The current source provides a long tail for the differential amplifier section. The feedback section generates a feedback voltage based on a reference bias voltage. The feedback voltage is used by an amplifier to control the current source and to keep the biasing and gain of the differential amplifier substantially constant. There are other embodiments as well.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: August 1, 2017
    Assignee: INPHI CORPORATION
    Inventors: Rajasekhar Nagulapalli, Simon Forey, Parmanand Mishra
  • Patent number: 9705666
    Abstract: The present invention is directed to data communication. More specifically, embodiments of the present invention provide a method for acquiring sampling frequency by sweeping through a predetermined frequency range, performing data sampling at different frequencies within the predetermined frequency range, and determining a target frequency for sampling data based on a maximum early peak frequency and a maximum late peak frequency. There are other embodiments as well.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: July 11, 2017
    Assignee: INPHI CORPORATION
    Inventors: Simon Forey, Parmanand Mishra, Sean Batty
  • Publication number: 20170163408
    Abstract: The present invention is directed to data communication. More specifically, embodiments of the present invention provide a method for acquiring sampling frequency by sweeping through a predetermined frequency range, performing data sampling at different frequencies within the predetermined frequency range, and determining a target frequency for sampling data based on a maximum early peak frequency and a maximum late peak frequency. There are other embodiments as well.
    Type: Application
    Filed: February 15, 2017
    Publication date: June 8, 2017
    Inventors: Simon FOREY, Parmanand MISHRA, Sean BATTY