Patents by Inventor Son V. Nguyen

Son V. Nguyen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180082894
    Abstract: Low capacitance and high reliability interconnect structures and methods of manufacture are disclosed. The method includes forming a copper based interconnect structure in an opening of a dielectric material. The method further includes forming a capping layer on the copper based interconnect structure. The method further includes oxidizing the capping layer and any residual material formed on a surface of the dielectric material. The method further includes forming a barrier layer on the capping layer by outdiffusing a material from the copper based interconnect structure to a surface of the capping layer. The method further includes removing the residual material, while the barrier layer on the surface of the capping layer protects the capping layer.
    Type: Application
    Filed: November 29, 2017
    Publication date: March 22, 2018
    Inventors: Daniel C. EDELSTEIN, Son V. NGUYEN, Takeshi NOGAMI, Deepika PRIYADARSHINI, Hosadurga K. SHOBHA
  • Publication number: 20180047617
    Abstract: Semiconductor devices having air gap spacers that are formed as part of BEOL or MOL layers of the semiconductor devices are provided, as well as methods for fabricating such air gap spacers. For example, a method comprises forming a first metallic structure and a second metallic structure on a substrate, wherein the first and second metallic structures are disposed adjacent to each other with insulating material disposed between the first and second metallic structures. The insulating material is etched to form a space between the first and second metallic structures. A layer of dielectric material is deposited over the first and second metallic structures using a pinch-off deposition process to form an air gap in the space between the first and second metallic structures, wherein a portion of the air gap extends above an upper surface of at least one of the first metallic structure and the second metallic structure.
    Type: Application
    Filed: October 20, 2017
    Publication date: February 15, 2018
    Inventors: Kangguo Cheng, Thomas J. Haigh, Juntao Li, Eric G. Liniger, Sanjay C. Mehta, Son V. Nguyen, Chanro Park, Tenko Yamashita
  • Publication number: 20180047615
    Abstract: Semiconductor devices having air gap spacers that are formed as part of BEOL or MOL layers of the semiconductor devices are provided, as well as methods for fabricating such air gap spacers. For example, a method comprises forming a first metallic structure and a second metallic structure on a substrate, wherein the first and second metallic structures are disposed adjacent to each other with insulating material disposed between the first and second metallic structures. The insulating material is etched to form a space between the first and second metallic structures. A layer of dielectric material is deposited over the first and second metallic structures using a pinch-off deposition process to form an air gap in the space between the first and second metallic structures, wherein a portion of the air gap extends above an upper surface of at least one of the first metallic structure and the second metallic structure.
    Type: Application
    Filed: August 9, 2016
    Publication date: February 15, 2018
    Inventors: Kangguo Cheng, Thomas J. Haigh, Juntao Li, Eric G. Liniger, Sanjay C. Mehta, Son V. Nguyen, Chanro Park, Tenko Yamashita
  • Publication number: 20180047568
    Abstract: Multilayer dielectric structures are provided with graded composition. For example, a multilayer dielectric structure includes a stack of dielectric films, wherein the dielectric films include at least a first SiCNO (silicon carbon nitride oxide) film and a second SiCNO film. The first SiCNO film has a first composition profile of C, N, and O atoms. The second SiCNO film has a second composition profile of C, N, and O atoms, which is different from the first composition profile of C, N, and O atoms. The composition profiles of C, N and/or O atoms of the constituent dielectric films of the multilayer dielectric structure are customized to enhance or otherwise optimize one or more electrical and/or physical properties of the multilayer dielectric structure.
    Type: Application
    Filed: October 30, 2017
    Publication date: February 15, 2018
    Inventors: Son V. Nguyen, Deepika Priyadarshini
  • Patent number: 9892961
    Abstract: Semiconductor devices having air gap spacers that are formed as part of BEOL or MOL layers of the semiconductor devices are provided, as well as methods for fabricating such air gap spacers. For example, a method comprises forming a first metallic structure and a second metallic structure on a substrate, wherein the first and second metallic structures are disposed adjacent to each other with insulating material disposed between the first and second metallic structures. The insulating material is etched to form a space between the first and second metallic structures. A layer of dielectric material is deposited over the first and second metallic structures using a pinch-off deposition process to form an air gap in the space between the first and second metallic structures, wherein a portion of the air gap extends above an upper surface of at least one of the first metallic structure and the second metallic structure.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: February 13, 2018
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Thomas J. Haigh, Juntao Li, Eric G. Liniger, Sanjay C. Mehta, Son V. Nguyen, Chanro Park, Tenko Yamashita
  • Publication number: 20180019203
    Abstract: An upper layer is formed in a first interlayer dielectric (ILD) layer. The upper layer comprises a plurality of metal interconnects and one or more upper layer air gaps positioned between adjacent metal interconnects. A lower layer is formed in the first ILD layer. The lower layer comprises one or more vias, and one or more lower air gaps positioned between adjacent vias. The upper layer and the lower layer are formed in accordance with a dual-damascene process.
    Type: Application
    Filed: August 30, 2017
    Publication date: January 18, 2018
    Inventors: Richard A. Conti, Jessica Dechene, Susan S. Fan, Son V. Nguyen, Jeffrey C. Shearer
  • Publication number: 20180019202
    Abstract: An upper layer is formed in a first interlayer dielectric (ILD) layer. The upper layer comprises a plurality of metal interconnects and one or more upper layer air gaps positioned between adjacent metal interconnects. A lower layer is formed in the first ILD layer. The lower layer comprises one or more vias, and one or more lower air gaps positioned between adjacent vias. The upper layer and the lower layer are formed in accordance with a dual-damascene process.
    Type: Application
    Filed: August 30, 2017
    Publication date: January 18, 2018
    Inventors: Richard A. Conti, Jessica Dechene, Susan S. Fan, Son V. Nguyen, Jeffrey C. Shearer
  • Publication number: 20180019200
    Abstract: An upper layer is formed in a first interlayer dielectric (ILD) layer. The upper layer comprises a plurality of metal interconnects and one or more upper layer air gaps positioned between adjacent metal interconnects. A lower layer is formed in the first ILD layer. The lower layer comprises one or more vias, and one or more lower air gaps positioned between adjacent vias. The upper layer and the lower layer are formed in accordance with a dual-damascene process.
    Type: Application
    Filed: July 12, 2016
    Publication date: January 18, 2018
    Inventors: Richard A. Conti, Jessica Dechene, Susan S. Fan, Son V. Nguyen, Jeffrey C. Shearer
  • Patent number: 9859212
    Abstract: An upper layer is formed in a first interlayer dielectric (ILD) layer. The upper layer comprises a plurality of metal interconnects and one or more upper layer air gaps positioned between adjacent metal interconnects. A lower layer is formed in the first ILD layer. The lower layer comprises one or more vias, and one or more lower air gaps positioned between adjacent vias. The upper layer and the lower layer are formed in accordance with a dual-damascene process.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: January 2, 2018
    Assignee: International Business Machines Corporation
    Inventors: Richard A. Conti, Jessica Dechene, Susan S. Fan, Son V. Nguyen, Jeffrey C. Shearer
  • Publication number: 20170348098
    Abstract: A method of implanting a prosthetic mitral heart valve includes advancing a guidewire through a femoral vein, an atrial septum, and a native mitral valve. A guide catheter is advanced over the guidewire and a delivery catheter is advanced through the guide catheter. A mitral valve assembly is disposed along a distal end of the delivery catheter. The mitral valve assembly includes a stent and a valve having three leaflets. The stent has a flared inlet end, an outlet end, and an intermediate portion with a plurality of prongs disposed along its outer surface. The mitral valve assembly is deployed with the flared inlet end positioned in a left atrium and the intermediate portion positioned between native mitral valve leaflets. The prongs penetrate surrounding tissue for preventing upward migration of the mitral valve assembly and the flared inlet end is shaped for preventing downward migration.
    Type: Application
    Filed: August 22, 2017
    Publication date: December 7, 2017
    Inventors: Stanton J. Rowe, Mark Chau, Son V. Nguyen
  • Publication number: 20170317032
    Abstract: A semiconductor device includes a metal-containing structure such as a copper-containing wire or plug and a composite capping layer formed over the metal-containing structure. The composite capping layer includes a manganese-containing layer disposed over the metal-containing structure, a silicon-containing low-k dielectric layer disposed over the manganese-containing layer, and an intermediate layer between the manganese-containing layer and the silicon-containing low-k dielectric layer. The intermediate layer is the reaction product of the manganese-containing layer and the silicon-containing low-k dielectric layer.
    Type: Application
    Filed: July 10, 2017
    Publication date: November 2, 2017
    Inventors: Donald F. Canaperi, Son V. Nguyen, Takeshi Nogami, Deepika Priyadarshini
  • Publication number: 20170263449
    Abstract: A method for depositing a dielectric layer that includes introducing a substrate into a process chamber of a deposition tool; and heating the substrate to a process temperature. The method may further include introducing precursors that include at least one dielectric providing gas species for a deposited layer and at least one hydrogen precursor gas into the process chamber of the deposition tool. The hydrogen precursor gas is introduced to the deposition chamber at a flow rate ranging from 50 sccm to 5000 sccm. The molar ratio for Hydrogen/Silicon gas precursor can be equal or greater than 0.05.
    Type: Application
    Filed: March 24, 2017
    Publication date: September 14, 2017
    Inventors: Thomas J. Haigh, JR., Son V. Nguyen, Deepika Priyadarshini, Hosadurga Shobha
  • Publication number: 20170263451
    Abstract: A method for depositing a dielectric layer that includes introducing a substrate into a process chamber of a deposition tool; and heating the substrate to a process temperature. The method may further include introducing precursors that include at least one dielectric providing gas species for a deposited layer and at least one hydrogen precursor gas into the process chamber of the deposition tool. The hydrogen precursor gas is introduced to the deposition chamber at a flow rate ranging from 50 sccm to 5000 sccm. The molar ratio for Hydrogen/Silicon gas precursor can be equal or greater than 0.05.
    Type: Application
    Filed: March 24, 2017
    Publication date: September 14, 2017
    Inventors: Thomas J. Haigh, JR., Son V. Nguyen, Deepika Priyadarshini, Hosadurga Shobha
  • Publication number: 20170252157
    Abstract: A method of crimping an implantable prosthetic valve can include placing protective material over at least a portion of the implantable prosthetic valve. The protective material can be configured to occupy space between open cells of a frame of the implantable prosthetic valve to prevent damage to a leaflet structure of the implantable prosthetic valve. The method can also include crimping the implantable prosthetic valve with the protective material on the implantable prosthetic valve, and removing the protective material from between the frame and the leaflet structure of the implantable prosthetic valve.
    Type: Application
    Filed: May 19, 2017
    Publication date: September 7, 2017
    Inventors: Ilia Hariton, Netanel Benichou, Yaacov Nitzan, Bella Felsen, Diana Nguyen-Thien-Nhon, Rajesh A. Khanna, Son V. Nguyen, Tamir S. Levi, Itai Pelled
  • Publication number: 20170231756
    Abstract: Expandable docking stations for docking an expandable valve can include a valve seat, one or more sealing portions, and one or more retaining portions. The valve seat can be unexpandable or substantially unexpandable beyond a deployed size. The one or more sealing portions are connected to the valve seat and extend radially outward of the valve seat. The one or more sealing portions are constructed to expand outward of the valve seat and provide a seal over a range of sizes. The one or more retaining portions are connected to the one or more sealing portions. The one or more retaining portions are configured to retain the docking station at a deployed position.
    Type: Application
    Filed: February 1, 2017
    Publication date: August 17, 2017
    Applicant: Edwards Lifesciences Corporation
    Inventors: Dustin P. Armer, Michael D. Franklin, Sergio Delgado, Abhijeet Joshi, Dinesh L. Sirimanne, Russell T. Joseph, Eason Michael Abbott, Tram Ngoc Nguyen, Son V. Nguyen, Hien Tran Ngo, Vivian Tran, Charles L. Bowman, Stanton J. Rowe
  • Patent number: 9735005
    Abstract: A method for depositing a dielectric layer that includes introducing a substrate into a process chamber of a deposition tool; and heating the substrate to a process temperature. The method may further include introducing precursors that include at least one dielectric providing gas species for a deposited layer and at least one hydrogen precursor gas into the process chamber of the deposition tool. The hydrogen precursor gas is introduced to the deposition chamber at a flow rate ranging from 50 sccm to 5000 sccm. The molar ratio for Hydrogen/Silicon gas precursor can be equal or greater than 0.05.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: August 15, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas J. Haigh, Jr., Son V. Nguyen, Deepika Priyadarshini, Hosadurga Shobha
  • Publication number: 20170216028
    Abstract: The present invention relates to devices and methods for improving the function of a defective heart valve, and particularly for reducing regurgitation through an atrioventricular heart valveā€”i.e., the mitral valve and the tricuspid valve. For a tricuspid repair, the device includes an anchor deployed in the tissue of the right ventricle, in an orifice opening to the right atrium, or anchored to the tricuspid valve. A flexible anchor rail connects to the anchor and a coaptation element on a catheter rides over the anchor rail. The catheter attaches to the proximal end of the coaptation element, and a locking mechanism fixes the position of the coaptation element relative to the anchor rail. Finally, there is a proximal anchoring feature to fix the proximal end of the coaptation catheter subcutaneously adjacent the subclavian vein. The coaptation element includes an inert covering and helps reduce regurgitation through contact with the valve leaflets.
    Type: Application
    Filed: April 12, 2017
    Publication date: August 3, 2017
    Applicant: Edwards Lifesciences Corporation
    Inventors: Vivian Khalil, Erin M. Spinner, Neil S. Zimmerman, Alexander J. Siegel, Son V. Nguyen
  • Patent number: 9711456
    Abstract: A semiconductor device includes a metal-containing structure such as a copper-containing wire or plug and a composite capping layer formed over the metal-containing structure. The composite capping layer includes a manganese-containing layer disposed over the metal-containing structure, a silicon-containing low-k dielectric layer disposed over the manganese-containing layer, and an intermediate layer between the manganese-containing layer and the silicon-containing low-k dielectric layer. The intermediate layer is the reaction product of the manganese-containing layer and the silicon-containing low-k dielectric layer.
    Type: Grant
    Filed: December 19, 2015
    Date of Patent: July 18, 2017
    Assignee: International Business Machines Corporation
    Inventors: Donald F. Canaperi, Son V. Nguyen, Takeshi Nogami, Deepika Priyadarshini
  • Patent number: 9691705
    Abstract: An electrical device including an opening in a low-k dielectric material, and a copper including structure present within the opening for transmitting electrical current. A liner is present between the opening and the copper including structure. The liner includes a superlattice structure comprised of a metal oxide layer, a metal layer present on the metal oxide layer, and a metal nitride layer that is present on the metal layer. A first layer of the superlattice structure that is in direct contact with the low-k dielectric material is one of said metal oxide layer and a final layer of the superlattice structure that is in direct contact with the copper including structure is one of the metal nitride layers.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: June 27, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Donald F. Canaperi, Daniel C. Edelstein, Alfred Grill, Son V. Nguyen, Takeshi Nogami, Deepika Priyadarshini, Hosadurga Shobha
  • Publication number: 20170172736
    Abstract: A textured fabric for an implantable bioprosthesis is provided. The textured fabric can include a woven base layer and a plurality of loops projecting from the woven base layer. The plurality of loops are formed from a composite core-sheath yarn. The core can be made of a material that is different from the sheath. The core material can be selected to impart strength and resiliency to bending and the sheath material can be selected to impart a larger surface area or texture that facilitates cellular or tissue in-growth.
    Type: Application
    Filed: December 14, 2016
    Publication date: June 22, 2017
    Inventors: Ajay Chadha, Son V. Nguyen, Kevin D. Rupp