Patents by Inventor Sony Varghese

Sony Varghese has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11980021
    Abstract: Disclosed are 3-D DRAM devices and methods of forming 3-D DRAM devices. One method may include forming a stack of DRAM device layers, forming a MOS substrate directly atop the stack of alternating DRAM device layers, and forming a trench through the MOS substrate and the stack of DRAM device layers. The method may further include depositing a protection layer over the MOS substrate, wherein the protection layer is deposited at a non-zero angle of inclination relative to a vertical extending from a top surface of the MOS substrate.
    Type: Grant
    Filed: June 1, 2022
    Date of Patent: May 7, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Sony Varghese, Fred Fishburn
  • Patent number: 11974423
    Abstract: Examples herein relate to three-dimensional (3D) dynamic random access memory (DRAM) devices and replacement channel processes for fabricating 3D DRAM devices. In an example, a gate dielectric layer is formed on a sacrificial material, and a gate electrode is formed on the gate dielectric layer. After the gate electrode is formed, the sacrificial material is removed and replaced by a semiconductor material. A channel region of a device (e.g., a transistor) that includes the gate dielectric layer and gate electrode is formed in the semiconductor material. The channel region can be vertical or horizontal with respect to a main surface of a substrate on which the device is formed. A capacitor can be formed, such as before or after the semiconductor material is formed, and is electrically connected to the semiconductor material. The device and the capacitor together can form at least part of a 3D DRAM cell.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: April 30, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Fredrick Fishburn, Arvind Kumar, Sony Varghese
  • Patent number: 11956978
    Abstract: In one embodiment, a method of selectively forming a deposit may include providing a substrate, the substrate having a plurality of surface features, extending at a non-zero angle of inclination with respect to a perpendicular to a plane of the substrate. The method may include directing a reactive beam to the plurality of surface features, the reactive beam defining a non-zero angle of incidence with respect to a perpendicular to the plane of the substrate, wherein a seed layer is deposited on a first portion of the surface features, and is not deposited on a second portion of the surface features. The method may further include exposing the substrate to a reactive deposition process after the directing the reactive ion beam, wherein a deposit layer selectively grows over the seed layer.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: April 9, 2024
    Assignee: Applied Materials, Inc.
    Inventors: M. Arif Zeeshan, Kelvin Chan, Shantanu Kallakuri, Sony Varghese
  • Publication number: 20240040808
    Abstract: In one embodiment, a method of selectively forming a deposit may include providing a substrate, the substrate having a plurality of surface features, extending at a non-zero angle of inclination with respect to a perpendicular to a plane of the substrate. The method may include directing a reactive beam to the plurality of surface features, the reactive beam defining a non-zero angle of incidence with respect to a perpendicular to the plane of the substrate, wherein a seed layer is deposited on a first portion of the surface features, and is not deposited on a second portion of the surface features. The method may further include exposing the substrate to a reactive deposition process after the directing the reactive ion beam, wherein a deposit layer selectively grows over the seed layer.
    Type: Application
    Filed: October 13, 2023
    Publication date: February 1, 2024
    Applicant: Applied Materials, Inc.
    Inventors: M. Arif Zeeshan, Kelvin Chan, Shantanu Kallakuri, Sony Varghese
  • Publication number: 20230369112
    Abstract: Embodiments herein include void-free material depositions on a substrate (e.g., in a void-free trench-filled (VFTF) component) obtained using directional etching to remove predetermined portions of a seed layer covering the substrate. In several embodiments, directional etching followed by selective deposition can enable fill material (e.g., metal) patterning in tight spaces without any voids or seams. Void-free material depositions may be used in a variety of semiconductor devices, such as transistors, dual work function stacks, dynamic random-access memory (DRAM), non-volatile memory, and the like.
    Type: Application
    Filed: July 21, 2023
    Publication date: November 16, 2023
    Applicant: Applied Materials, Inc.
    Inventors: M. Arif Zeeshan, Kelvin Chan, Shantanu Kallakuri, Sony Varghese, John Hautala
  • Patent number: 11749564
    Abstract: Embodiments herein include void-free material depositions on a substrate (e.g., in a void-free trench-filled (VFTF) component) obtained using directional etching to remove predetermined portions of a seed layer covering the substrate. In several embodiments, directional etching followed by selective deposition can enable fill material (e.g., metal) patterning in tight spaces without any voids or seams. Void-free material depositions may be used in a variety of semiconductor devices, such as transistors, dual work function stacks, dynamic random-access memory (DRAM), non-volatile memory, and the like.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: September 5, 2023
    Assignee: Applied Materials, Inc.
    Inventors: M. Arif Zeeshan, Kelvin Chan, Shantanu Kallakuri, Sony Varghese, John Hautala
  • Patent number: 11700721
    Abstract: Disclosed are DRAM devices and methods of forming DRAM devices. One non-limiting method may include providing a device, the device including a plurality of angled structures formed from a substrate, a bitline and a dielectric between each of the plurality of angled structures, and a drain disposed along each of the plurality of angled structures. The method may further include providing a plurality of mask structures of a patterned masking layer over the plurality of angled structures, the plurality of mask structures being oriented perpendicular to the plurality of angled structures. The method may further include etching the device at a non-zero angle to form a plurality of pillar structures.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: July 11, 2023
    Assignee: Applied Materials, Inc.
    Inventor: Sony Varghese
  • Publication number: 20230146831
    Abstract: A semiconductor manufacturing process for forming a three-dimensional (3D) memory structure and a semiconductor device having a 3D memory structure is described. The 3D memory structure comprises layers of memory cells with L shaped conductive layers where the L shaped conductive layers of each layer are coupled to metal lines disposed above the top or upper most layer such that the memory cells in each layer can be coupled to control circuitry.
    Type: Application
    Filed: September 4, 2022
    Publication date: May 11, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Chang Seok Kang, Gill Yong Lee, Fred Fishburn, Tomohiko Kitajima, Sung-Kwan Kang, Sony Varghese
  • Publication number: 20230101155
    Abstract: A memory device architecture, and method of fabricating a three dimensional device are provided. The memory device architecture may include a plurality of memory blocks, arranged in an array, wherein a given memory block comprises: a cell region, the cell region comprising a three-dimensional array of memory cells, arranged in a plurality of n memory cell layers; and a staircase region, the staircase region being disposed adjacent to at least a first side of the cell region, the staircase region comprising a signal line assembly that is coupled to the three-dimensional array of memory cells.
    Type: Application
    Filed: July 19, 2022
    Publication date: March 30, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Chang Seok Kang, Fred Fishburn, Tomohiko Kitajima, Sung-Kwan Kang, Sony Varghese, Gill Yong Lee
  • Patent number: 11569242
    Abstract: Disclosed are DRAM devices and methods of forming DRAM devices. One method may include forming a plurality of trenches and angled structures, each angled structure including a first sidewall opposite a second sidewall, wherein the second sidewall extends over an adjacent trench. The method may include forming a spacer along a bottom surface of the trench, along the second sidewall, and along the first sidewall, wherein the spacer has an opening at a bottom portion of the first sidewall. The method may include forming a drain in each of the angled structures by performing an ion implant, which impacts the first sidewall through the opening at the bottom portion of the first sidewall. The method may include removing the spacer from the first sidewall, forming a bitline over the spacer along the bottom surface of each of the trenches, and forming a series of wordlines along the angled structures.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: January 31, 2023
    Assignee: APPLIED Materials, Inc.
    Inventors: Sony Varghese, Min Gyu Sung
  • Patent number: 11557515
    Abstract: Disclosed are approaches for forming a semiconductor device. In some embodiments, a method may include providing a plurality of patterning structures over a device layer, each of the plurality of patterning structures including a first sidewall, a second sidewall, and an upper surface, and forming a mask by depositing a masking material at a non-zero angle of inclination relative to a perpendicular to a plane defined by a top surface of the device layer. The mask may be formed over the plurality of patterning structures without being formed along the second sidewall. The method may further include selectively forming a metal layer along the second sidewall of each of the plurality of patterning structures.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: January 17, 2023
    Assignee: Applied Materials, Inc.
    Inventor: Sony Varghese
  • Patent number: 11532483
    Abstract: A method may include forming in a substrate a first array of a first material of first linear structures, interspersed with a second array of a second material, of second linear structures, the first and second linear structures elongated along a first axis. The method may include generating a chop pattern in the first layer, comprising a third linear array, interspersed with a fourth linear array. The third and fourth linear arrays may be elongated along a second axis, forming a non-zero angle of incidence with respect to the first axis. The third linear array may include alternating portions of the first and second material, while the fourth linear array comprises an array of cavities, arranged within the patterning layer. The method may include elongating a first set of cavities along the first axis, to form a first set of elongated cavities bounded by the first material.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: December 20, 2022
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventor: Sony Varghese
  • Patent number: 11515198
    Abstract: Some embodiments include a semiconductor construction which has one or more openings extending into a substrate. The openings are at least partially filled with dielectric material comprising silicon, oxygen and carbon. The carbon is present to a concentration within a range of from about 3 atomic percent to about 20 atomic percent. Some embodiments include a method of providing dielectric fill across a semiconductor construction having an opening extending therein. The semiconductor construction has an upper surface proximate the opening. The method includes forming photopatternable dielectric material within the opening and across the upper surface, and exposing the photopatternable dielectric material to patterned actinic radiation.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: November 29, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Scott L. Light, John A. Smythe, Sony Varghese
  • Publication number: 20220344282
    Abstract: Provided are methods of reducing the stress of a semiconductor wafer. A wafer map of a free-standing wafer is created using metrology tools. The wafer map is then converted into a power spectral density (PSD) using a spatial frequency scale. The fundamental component of bow is then compensated with a uniform film, e.g., silicon nitride (SiN), deposited on the back side of the wafer.
    Type: Application
    Filed: April 27, 2022
    Publication date: October 27, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Pradeep K. Subrahmanyan, Sean S. Kang, Sony Varghese
  • Publication number: 20220344171
    Abstract: Embodiments herein are directed to localized stress modulation by implanting a first side of a substrate to reduce in-plane distortion along a second side of the substrate. In some embodiments, a method may include providing a substrate, the substrate comprising a first main side opposite a second main side, wherein a plurality of features are disposed on the first main side, performing a metrology scan to the first main side to determine an amount of distortion to the substrate due to the formation of the plurality of features, and depositing a stress compensation film along the second main side of the substrate, wherein a stress and a thickness of the stress compensation film is determined based on the amount of distortion to the substrate. The method may further include directing ions to the stress compensation film in an ion implant procedure.
    Type: Application
    Filed: August 6, 2021
    Publication date: October 27, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Sony Varghese, Pradeep Subrahmanyan, Dennis Rodier, Kyuha Shim
  • Publication number: 20220344339
    Abstract: Methods of forming a three-dimensional dynamic random-access memory (3D DRAM) structure are provided herein. In some embodiments, a method of forming a 3D DRAM structure includes forming at least one wordline feature in a first stack comprising a plurality of crystalline silicon (c-Si) layers alternating with a plurality of crystalline silicon germanium (c-SiGe) layers, wherein the wordline feature comprises: vertically etching a first pattern of holes; filling the first pattern of holes with a silicon germanium fill; vertically etching a plurality of isolation slots through the first stack; filling the plurality of isolation slots with a dielectric material to form an isolation layer between the silicon germanium fill; etching the silicon germanium fill and the plurality of c-SiGe layers to form a plurality of gate silicon channels comprising portions of the plurality of c-Si layers; and depositing a layer of conductive material that wraps around the plurality of gate silicon channels.
    Type: Application
    Filed: December 29, 2021
    Publication date: October 27, 2022
    Inventors: Sony VARGHESE, Fredrick David FISHBURN
  • Publication number: 20220336470
    Abstract: Disclosed are 3-D DRAM devices and methods of forming 3-D DRAM devices. One method may include forming a stack of DRAM device layers, forming a MOS substrate directly atop the stack of alternating DRAM device layers, and forming a trench through the MOS substrate and the stack of DRAM device layers. The method may further include depositing a protection layer over the MOS substrate, wherein the protection layer is deposited at a non-zero angle of inclination relative to a vertical extending from a top surface of the MOS substrate.
    Type: Application
    Filed: June 1, 2022
    Publication date: October 20, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Sony Varghese, Fred Fishburn
  • Patent number: 11462546
    Abstract: A method may include providing a substrate, the substrate comprising a substrate base and a patterning stack, disposed on the substrate base. The substrate may include first linear structures in the patterning stack, the first linear structures being elongated along a first direction; and second linear structures in the patterning stack, the second linear structures being elongated along a second direction, the second direction forming a non-zero angle with respect to the first direction. The method may also include selectively forming a set of sidewall spacers on one set of sidewalls of the second linear structures.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: October 4, 2022
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Sony Varghese, Naushad Variam
  • Publication number: 20220285362
    Abstract: Methods for forming three-dimensional dynamic random-access memory (3D DRAM) structures that leverage a grid pattern of high aspect ratio holes to form subsequent features of the 3D DRAM. The method may include depositing alternating layers of crystalline silicon (c-Si) and crystalline silicon germanium (c-SiGe) using an heteroepitaxy process onto a substrate and HAR etching of a pattern of holes into the substrate. The holes configured to provide chemistry access to laterally etch or deposit materials to form 3D DRAM features without requiring subsequent HAR etching of holes to form the 3D DRAM features.
    Type: Application
    Filed: February 17, 2022
    Publication date: September 8, 2022
    Inventors: Fredrick David FISHBURN, Arvind KUMAR, Sony VARGHESE, Chang Seok KANG, Sung-Kwan KANG, Tomohiko KITAJIMA
  • Patent number: 11404314
    Abstract: Disclosed are approaches for forming a semiconductor device. In some embodiments, a method may include a method may include providing a semiconductor device including plurality of patterning structures over a device stack, each of the plurality of patterning structures including a first sidewall, a second sidewall, and an upper surface. The method may further include forming a seed layer along just the first sidewall and the upper surface of each of the plurality of patterning structures, forming a metal layer atop the seed layer, forming a fill material between each of the plurality of patterning structures, and removing the plurality of patterning structures.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: August 2, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Sony Varghese, M. Arif Zeeshan, Shantanu Kallakuri, Kelvin Chan