Patents by Inventor Srinivas Gandikota

Srinivas Gandikota has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10319624
    Abstract: Methods comprising forming a film on at least one feature of a substrate surface are described. The film is expanded to fill the at least one feature and cause growth of the film from the at least one feature. Methods of forming self-aligned vias are also described.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: June 11, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Susmit Singha Roy, Yihong Chen, Kelvin Chan, Abhijit Basu Mallick, Srinivas Gandikota, Pramit Manna
  • Patent number: 10319604
    Abstract: Processing methods comprising depositing a film on a substrate surface and in a surface feature with chemical planarization to remove the film from the substrate surface, leaving the film in the feature. A pillar is grown from the film so that the pillar grows orthogonally to the substrate surface.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: June 11, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Ziqing Duan, Yihong Chen, Abhijit Basu Mallick, Srinivas Gandikota
  • Patent number: 10319636
    Abstract: Methods comprising depositing a film material to form an initial film in a trench in a substrate surface are described. The film is treated to expand the film to grow beyond the substrate surface.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: June 11, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Atashi Basu, Abhijit Basu Mallick, Ziqing Duan, Srinivas Gandikota
  • Publication number: 20190157134
    Abstract: Methods for seam-less gapfill comprising sequentially depositing a film with a seam, reducing the height of the film to remove the seam and repeating until a seam-less film is formed. Some embodiments include optional film doping and film treatment (e.g., ion implantation and annealing).
    Type: Application
    Filed: January 28, 2019
    Publication date: May 23, 2019
    Inventors: Pramit Manna, Ludovic Godet, Rui Cheng, Erica Chen, Ziqing Duan, Abhijit Basu Mallick, Srinivas Gandikota
  • Patent number: 10269633
    Abstract: Methods for depositing a contact metal layer in contact structures of a semiconductor device are provided. In one embodiment, a method for depositing a contact metal layer for forming a contact structure in a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a contact metal layer on a substrate and annealing the contact metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the contact metal layer on the substrate, exposing the portion of the contact metal layer to a plasma treatment process, and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the contact metal layer to a plasma treatment process until a predetermined thickness of the contact metal layer is achieved.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: April 23, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bhushan N. Zope, Avgerinos V. Gelatos, Bo Zheng, Yu Lei, Xinyu Fu, Srinivas Gandikota, Sang-Ho Yu, Mathew Abraham
  • Publication number: 20190080915
    Abstract: Embodiments described herein relate to methods and materials for fabricating semiconductor device structures. In one example, a metal film stack includes a plurality of metal containing films and a plurality of metal derived films arranged in an alternating manner. In another example, a metal film stack includes a plurality of metal containing films which are modified into metal derived films. In certain embodiments, the metal film stacks are used in oxide/metal/oxide/metal (OMOM) structures for memory devices.
    Type: Application
    Filed: September 4, 2018
    Publication date: March 14, 2019
    Inventors: Susmit Singha ROY, Yingli RAO, Srinivas GANDIKOTA
  • Patent number: 10192775
    Abstract: Methods for seam-less gapfill comprising sequentially depositing a film with a seam, reducing the height of the film to remove the seam and repeating until a seam-less film is formed. Some embodiments include optional film doping and film treatment (e.g., ion implantation and annealing).
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: January 29, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Pramit Manna, Ludovic Godet, Rui Cheng, Erica Chen, Ziqing Duan, Abhijit Basu Mallick, Srinivas Gandikota
  • Publication number: 20180358222
    Abstract: Implementations of the present disclosure generally relate to the fabrication of integrated circuits. More particularly, the implementations described herein provide techniques for deposition of high-density films for patterning applications. In one implementation, a method of processing a substrate is provided. The method includes flowing a hydrocarbon-containing gas mixture into a processing volume of a process chamber having a substrate positioned on an electrostatic chuck. The substrate is maintained at a pressure between about 0.5 mTorr and about 10 Torr. The method further includes generating a plasma at the substrate level by applying a first RF bias to the electrostatic chuck to deposit a diamond-like carbon film on the substrate. The diamond-like carbon film has a density greater than 1.8 g/cc and a stress less than ?500 MPa.
    Type: Application
    Filed: May 15, 2018
    Publication date: December 13, 2018
    Inventors: Eswaranand VENKATASUBRAMANIAN, Samuel E. GOTTHEIM, Yang YANG, Pramit MANNA, Kartik RAMASWAMY, Takehito KOZHIZAWA, Abhijit Basu MALLICK, Srinivas GANDIKOTA
  • Publication number: 20180358264
    Abstract: Methods for filling a substrate feature with a seamless tungsten fill are described. The methods include depositing a tungsten film, oxidizing the tungsten film to a tungsten oxide pillar, reducing the tungsten oxide film to a seamless tungsten gapfill and optionally depositing additional tungsten on the tungsten gapfill.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 13, 2018
    Applicant: Applied Materials, Inc
    Inventors: Yong Wu, Yihong Chen, Shishi Jiang, Ziqing Duan, Abhijit Basu Mallick, Srinivas Gandikota
  • Publication number: 20180350606
    Abstract: Methods for forming 3D-NAND devices comprising recessing a poly-Si layer to a depth below a spaced oxide layer. A liner is formed on the spaced oxide layer and not on the recessed poly-Si layer. A metal layer is deposited in the gaps on the liner to form wordlines.
    Type: Application
    Filed: June 5, 2018
    Publication date: December 6, 2018
    Inventors: Yihong Chen, Yong Wu, Chia Cheng Chin, Xinliang Lu, Srinivas Gandikota, Ziqing Duan, Abhijit Basu Mallick
  • Publication number: 20180308694
    Abstract: Methods comprising depositing a film material to form an initial film in a trench in a substrate surface are described. The film is treated to expand the film to grow beyond the substrate surface.
    Type: Application
    Filed: April 12, 2018
    Publication date: October 25, 2018
    Inventors: Yihong Chen, Ziping Duan, Yong Wu, Abhijit Basu Mallick, Srinivas Gandikota
  • Publication number: 20180247821
    Abstract: Methods for depositing a metal film without the use of a barrier layer are disclosed. Some embodiments comprise forming an amorphous nucleation layer comprising one or more of silicon or boron and forming a metal layer on the nucleation layer.
    Type: Application
    Filed: April 24, 2018
    Publication date: August 30, 2018
    Inventors: Yihong Chen, Yong Wu, Chia Cheng Chin, Srinivas Gandikota
  • Patent number: 10060024
    Abstract: Target assemblies and PVD chambers including target assemblies are disclosed. The target assembly includes a target that has a concave shaped target. When used in a PVD chamber, the concave target provides more radially uniform deposition on a substrate disposed in the sputtering chamber.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: August 28, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Zhendong Liu, Rongjun Wang, Xianmin Tang, Srinivas Gandikota, Tza-Jing Gung, Muhammad M. Rasheed
  • Publication number: 20180240676
    Abstract: Methods of depositing a film by atomic layer deposition are described. The methods comprise exposing a substrate surface to a first process condition comprising a first reactive gas and a second reactive gas and exposing the substrate surface to a second process condition comprising the second reactive gas. The first process condition comprises less than a full amount of the second reactive gas for a CVD process.
    Type: Application
    Filed: April 23, 2018
    Publication date: August 23, 2018
    Inventors: Kelvin Chan, Yihong Chen, Jared Ahmad Lee, Kevin Griffin, Srinivas Gandikota, Joseph Yudovsky, Mandyam Sriram
  • Publication number: 20180144980
    Abstract: Methods comprising depositing a film material to form an initial film in a trench in a substrate surface are described. The film is treated to expand the film to grow beyond the substrate surface.
    Type: Application
    Filed: November 2, 2017
    Publication date: May 24, 2018
    Inventors: Atashi Basu, Abhijit Basu Mallick, Ziqing Duan, Srinivas Gandikota
  • Patent number: 9978685
    Abstract: Methods for depositing a metal film comprising forming an amorphous silicon layer as a nucleation layer and/or glue layer on a substrate. Some embodiments further comprise the incorporation of a glue layer to increase the ability of the amorphous silicon layer and metal layer to stick to the substrate.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: May 22, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yihong Chen, Kelvin Chan, Srinivas Gandikota
  • Publication number: 20180130671
    Abstract: Processing methods comprising depositing a film on a substrate surface and in a surface feature with chemical planarization to remove the film from the substrate surface, leaving the film in the feature. A pillar is grown from the film so that the pillar grows orthogonally to the substrate surface.
    Type: Application
    Filed: November 7, 2017
    Publication date: May 10, 2018
    Inventors: Ziqing Duan, Yihong Chen, Abhijit Basu Mallick, Srinivas Gandikota
  • Patent number: 9922872
    Abstract: Processing methods comprising exposing a substrate to a nucleation promoter followed by sequential exposure of a first reactive gas comprising a metal-containing compound and a second reactive gas to form a metal-containing film on the substrate.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: March 20, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: David Knapp, Jeffrey W. Anthis, Xinyu Fu, Srinivas Gandikota
  • Publication number: 20180068890
    Abstract: Methods for depositing a contact metal layer in contact structures of a semiconductor device are provided. In one embodiment, a method for depositing a contact metal layer for forming a contact structure in a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a contact metal layer on a substrate and annealing the contact metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the contact metal layer on the substrate, exposing the portion of the contact metal layer to a plasma treatment process, and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the contact metal layer to a plasma treatment process until a predetermined thickness of the contact metal layer is achieved.
    Type: Application
    Filed: November 13, 2017
    Publication date: March 8, 2018
    Inventors: Bhushan N. ZOPE, Avgerinos V. GELATOS, Bo ZHENG, Yu LEI, Xinyu FU, Srinivas GANDIKOTA, Sang-Ho YU, Mathew ABRAHAM
  • Patent number: 9881787
    Abstract: Methods for depositing titanium oxide films by atomic layer deposition are disclosed. Titanium oxide films may include a titanium nitride cap, an oxygen rich titanium nitride cap or a mixed oxide nitride layer. Also described are methods for self-aligned double patterning including titanium oxide spacer films.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: January 30, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Chien-Teh Kao, Benjamin Schmiege, Xuesong Lu, Juno Yu-Ting Huang, Yu Lei, Yung-Hsin Lee, Srinivas Gandikota, Rajkumar Jakkaraju, Chikuang Charles Wang, Ghazal Saheli, Benjamin C. Wang, Xinliang Lu, Pingyan Lei