Patents by Inventor Srinivas Gandikota

Srinivas Gandikota has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11961734
    Abstract: A method of forming a high-? dielectric cap layer on a semiconductor structure formed on a substrate includes depositing the high-? dielectric cap layer on the semiconductor structure, depositing a sacrificial silicon cap layer on the high-? dielectric cap layer, performing a post cap anneal process to harden and densify the as-deposited high-? dielectric cap layer, and removing the sacrificial silicon cap layer.
    Type: Grant
    Filed: April 26, 2022
    Date of Patent: April 16, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Srinivas Gandikota, Yixiong Yang, Jacqueline Samantha Wrench, Yong Yang, Steven C. H. Hung
  • Patent number: 11955332
    Abstract: A method of forming a high-? dielectric cap layer on a semiconductor structure formed on a substrate includes depositing the high-? dielectric cap layer on the semiconductor structure, depositing a sacrificial silicon cap layer on the high-? dielectric cap layer, performing a post cap anneal process to harden and densify the as-deposited high-? dielectric cap layer, and removing the sacrificial silicon cap layer.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: April 9, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Srinivas Gandikota, Yixiong Yang, Jacqueline Samantha Wrench, Yong Yang, Steven C. H. Hung
  • Publication number: 20240102157
    Abstract: Embodiments of the disclosure are directed to methods of depositing a molybdenum film directly on a substrate surface (e.g., a low-K dielectric material) by exposing the substrate surface to a molybdenum-containing precursor and a plasma at a temperature of less than or equal to 400° C. The molybdenum-containing precursor comprises one or more of molybdenum pentachloride (MoCl5), molybdenum dioxide dichloride (MoO2Cl2), molybdenum oxytetrachloride (MoOCl4), molybdenum hexacarbonyl, bis(tert-butylimido)-bis(dimethylamido)molybdenum, or bis(ethylbenzene) molybdenum. The plasma comprises one or more of hydrogen (H2), nitrogen (N2), or a silane (SixHy). In some embodiments, when the molybdenum-containing precursor comprises molybdenum hexafluoride (MoF6), the plasma does not include hydrogen (H2).
    Type: Application
    Filed: September 22, 2022
    Publication date: March 28, 2024
    Applicant: Applied Materials, Inc.
    Inventors: TUERXUN AILIHUMAER, Srinivas Gandikota, Yixiong Yang, Yogesh Sharma, Ashutosh Agarwal, Mandyam Sriram
  • Patent number: 11932939
    Abstract: Apparatus for processing a substrate are provided herein. In some embodiments, a lid for a substrate processing chamber includes: a lid plate comprising an upper surface and a contoured bottom surface, the upper surface having a central opening and the contoured bottom surface having a first portion that extends downwardly and outwardly from the central opening to a peripheral portion of the lid plate and a second portion that extends radially outward along the peripheral portion of the lid plate; an upper flange extending radially outward from the lid plate; and one or more channels formed through the lid plate from the upper surface of the lid plate to the second portion of the contoured bottom surface.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: March 19, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Muhammad M. Rasheed, Srinivas Gandikota, Mario Dan Sanchez, Guoqiang Jian, Yixiong Yang, Deepak Jadhav, Ashutosh Agarwal
  • Publication number: 20240087899
    Abstract: Methods of manufacturing and processing semiconductor devices (i.e., electronic devices) are described. The methods include treating a surface of a metal gate stack with a radical treatment. The radical treatment may be used to treat one or more layers or surfaces of layers in the metal gate stack. The radical treatment may be performed once or multiple times during the methods described herein. The radical treatment comprises flowing one or more of nitrogen radicals (N2*) and hydrogen radicals (H*) over the surface of the metal gate stack.
    Type: Application
    Filed: September 9, 2022
    Publication date: March 14, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Zhihui Liu, Seshadri Ganguli, Tianyi Huang, Yixiong Yang, Srinivas Gandikota, Yuanhua Zheng, Yongjing Lin, Keyur Karandikar, Elizabeth Mao
  • Publication number: 20240060175
    Abstract: Embodiments of the disclosure provide conformally deposited molybdenum films having reduced resistivity and methods of forming the same. The methods include forming a nucleation layer directly on a dielectric layer on a substrate surface by exposing the substrate surface to a molybdenum-containing precursor and a nucleation reactant, and conformally depositing a molybdenum film on the nucleation layer. Another aspect of the disclosure pertains to a method that is part of a gap fill process, comprising forming a nucleation layer directly on a dielectric region within one or more high aspect ratio gap features, including vertical gap features and/or horizontal gap features, and conformally depositing a molybdenum film on the nucleation layer to fill the feature.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 22, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Srinivas Gandikota, Yixiong Yang, Yong Yang, Tuerxun Ailihumaer, Yogesh Sharma, Kunal Bhatnagar, Mohith Verghese
  • Publication number: 20240063064
    Abstract: Methods of manufacturing and processing semiconductor devices (i.e., electronic devices) are described. Embodiments of the disclosure advantageously provide electronic devices which comprise a dipole region and meet reduced thickness and lower thermal budget requirements. The electronic devices described herein comprise a source region, a drain region, and a channel separating the source region and the drain region, an interfacial layer on a top surface of the channel, a high-? dielectric layer on the interfacial layer, a dipole layer on the high-? dielectric layer, and optionally, a capping layer on the dipole layer. In some embodiments, the methods comprise annealing the substrate to drive atoms from the dipole layer into one or more of the interfacial layer or the high-? dielectric layer.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 22, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Srinivas Gandikota, Yixiong Yang, Tianyi Huang, Tengzhou Ma, Seshadri Ganguli
  • Patent number: 11908914
    Abstract: Methods for forming a semiconductor structure and semiconductor structures are described. The method comprises patterning a substrate to form a first opening and a second opening, the substrate comprising an n transistor and a p transistor, the first opening over the n transistor and the second opening over the p transistor; pre-cleaning the substrate; depositing a titanium silicide (TiSi) layer on the n transistor and on the p transistor by plasma-enhanced chemical vapor deposition (PECVD); optionally depositing a first barrier layer on the titanium silicide (TiSi) layer and selectively removing the first barrier layer from the p transistor; selectively forming a molybdenum silicide (MoSi) layer on the titanium silicide (TiSi) layer on the n transistor and the p transistor; forming a second barrier layer on the molybdenum silicide (MoSi) layer; and annealing the semiconductor structure. The method may be performed in a processing chamber without breaking vacuum.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: February 20, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Ria Someshwar, Seshadri Ganguli, Lan Yu, Siddarth Krishnan, Srinivas Gandikota, Jacqueline S. Wrench, Yixiong Yang
  • Patent number: 11887856
    Abstract: Methods of depositing a film by atomic layer deposition are described. The methods comprise exposing a substrate surface to a first process condition comprising a first reactive gas and a second reactive gas and exposing the substrate surface to a second process condition comprising the second reactive gas. The first process condition comprises less than a full amount of the second reactive gas for a CVD process.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: January 30, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kelvin Chan, Yihong Chen, Jared Ahmad Lee, Kevin Griffin, Srinivas Gandikota, Joseph Yudovsky, Mandyam Sriram
  • Patent number: 11888045
    Abstract: Methods of forming and processing semiconductor devices are described. Certain embodiments related to electronic devices which comprise a dipole region having an interlayer dielectric, a high-? dielectric material, and a dipole layer. The dipole layer comprises one or more of titanium lanthanum nitride (TiLaN), titanium yttrium nitride (TiYN), titanium strontium nitride (TiSrN), titanium magnesium nitriride (TiMgN, titanium aluminum nitride (TiAlN), titanium tantalum nitride (TiTaN), hafnium carbide (HfC), hafnium nitride (HfN), hafnium oxynitride (HfON), hafnium oxycarbide (HfOC), hafnium carbide aluminum (HfCAl), hafnium aluminum nitride (HfAlN), or hafnium carbonitride (HfCN).
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: January 30, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yongjing Lin, Karla M Bernal Ramos, Luping Li, Shih Chung Chen, Jacqueline S. Wrench, Yixiong Yang, Steven C. H. Hung, Srinivas Gandikota, Naomi Yoshida, Lin Dong
  • Patent number: 11887855
    Abstract: Provided are atomic layer deposition methods to deposit a tungsten film or tungsten-containing film using a tungsten-containing reactive gas comprising one or more of tungsten pentachloride, a compound with the empirical formula WCl5 or WCl6.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: January 30, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xinyu Fu, Srinivas Gandikota, Avgerinos V. Gelatos, Atif Noori, Mei Chang, David Thompson, Steve G. Ghanayem
  • Publication number: 20240026529
    Abstract: Embodiments of the disclosure provide conformally deposited molybdenum films having reduced resistivity and methods of forming the same. The methods include converting an amorphous silicon layer to a metal layer by thermally soaking the amorphous silicon layer comprising silicon atoms in the presence of a metal compound selected from the group consisting of a molybdenum compound and a tungsten compound until at least a portion of the silicon atoms in the amorphous silicon layer are replaced by metal atoms selected from the group consisting of molybdenum atoms and tungsten atoms. The methods include conformally depositing a molybdenum film on the metal layer.
    Type: Application
    Filed: July 17, 2023
    Publication date: January 25, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Srinivas Gandikota, Tuerxun Ailihumaer, Yixiong Yang, Seshadri Ganguli, Yogesh Sharma
  • Patent number: 11869806
    Abstract: Methods for forming a semiconductor structure are described. The method includes cleaning a substrate to form a substrate surface substantially free of oxide, exposing the substrate surface to a first molybdenum precursor, and exposing the substrate surface to a reactant to selectively deposit a first molybdenum film on the substrate surface. The method may be performed in a processing chamber without breaking vacuum. The method may also include forming one or more of a cap layer and a liner and annealing the substrate. The method may also include depositing a second molybdenum film on the substrate surface.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: January 9, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Seshadri Ganguli, Jacqueline S. Wrench, Yixiong Yang, Yong Yang, Srinivas Gandikota
  • Publication number: 20230416909
    Abstract: Embodiments of the disclosure provide a method of forming a dielectric film in trenches of a substrate. The utilization of the ALD process and introduction of an inhibitor material onto features defining the trenches and into the trenches provides for suppression of forming the dielectric film near the top surface of the features in the trenches. The dielectric film is formed via an ALD process. The ALD process includes sequentially exposing the substrate to an inhibitor material, a first precursor, a purge gas, an oxygen-containing precursor, and the purge gas during an ALD cycle, and repeating the ALD cycle to deposit the dielectric film.
    Type: Application
    Filed: June 16, 2023
    Publication date: December 28, 2023
    Inventors: Geetika BAJAJ, Seshadri GANGULI, Gopi Chandran RAMACHANDRAN, Srinivas GANDIKOTA
  • Publication number: 20230420486
    Abstract: Exemplary methods of semiconductor processing may include providing a first precursor to a semiconductor processing chamber. A substrate may be disposed within a processing region of the semiconductor processing chamber. The first precursor may include one or more of niobium, tantalum, or titanium. The methods may include contacting the substrate with the first precursor. The contacting may form a layer of metal on the substrate. The methods may include providing a second precursor to a semiconductor processing chamber. The second precursor comprises oxygen. The methods may include contacting the layer of metal with the second precursor. The contacting may form a layer of metal oxide on the substrate. The layer of metal oxide may be one or more of niobium oxide, tantalum oxide, or titanium oxide.
    Type: Application
    Filed: June 12, 2023
    Publication date: December 28, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Geetika Bajaj, Shonal Chouksey, Amit Kumar Roy, Darshan Thakare, Seshadri Ganguli, Gopi Chandran Ramachandran, Srinivas Gandikota, Jayeeta Sen
  • Publication number: 20230416915
    Abstract: Exemplary methods of semiconductor processing may include providing a first precursor to a semiconductor processing chamber. A substrate may be disposed within a processing region of the semiconductor processing chamber. The first precursor may include a first metal. The methods may include contacting the substrate with the first precursor. The contacting may form a first portion of a metal oxide material on the substrate. The methods may include providing a second precursor to the semiconductor processing chamber. The second precursor may be an oxygen-containing precursor including an alcohol, an alkoxide, a hydroxide, an acetylacetonate, an acetate, a formate, a nitrate, a sulfate, a phosphate, a phosphide, a carbonate, an oxide, an oxynitride, a perchlorate, an oxyhalide, a peroxide, an oxalate, or a phenolate. The methods may include contacting the first portion of the metal oxide material with the second precursor. The contacting may form a metal oxide material.
    Type: Application
    Filed: June 12, 2023
    Publication date: December 28, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Geetika Bajaj, Amit Kumar Roy, Shonal Chouksey, Seshadri Ganguli, Gopi Chandran Ramachandran, Srinivas Gandikota
  • Publication number: 20230402291
    Abstract: A method of adjusting a threshold voltage in a field-effect-transistor (FET) device includes performing a deposition process to deposit a diffusion barrier layer over a gate dielectric layer in a first region, a second region, and a third region of a semiconductor structure, performing a first patterning process to remove a portion of the deposited diffusion layer in the first region, performing a second patterning process to partially remove a portion of the deposited diffusion barrier layer in the second region, performing a dipole layer deposition process to deposit a dipole layer over the gate dielectric layer in the first region, and the diffusion barrier layer in the second region and in the third region, and performing an annealing process to drive dipole dopants from the dipole layer into the gate dielectric layer.
    Type: Application
    Filed: May 16, 2023
    Publication date: December 14, 2023
    Inventors: Steven C. H. HUNG, Yixiong YANG, Tianyi HUANG, Srinivas GANDIKOTA
  • Publication number: 20230377879
    Abstract: Embodiments of the present disclosure are related to methods of preventing aluminum diffusion in a metal gate stack (e.g., high-? metal gate (HKMG) stacks and nMOS FET metal gate stacks). Some embodiments relate to a barrier layer for preventing aluminum diffusion into high-? metal oxide layers. The barrier layer described herein is configured to reduce threshold voltage (Vt) shift and reduce leakage in the metal gate stacks. Additional embodiments relate to methods of forming a metal gate stack having the barrier layer described herein. The barrier layer may include one or more of amorphous silicon (a-Si), titanium silicon nitride (TiSiN), tantalum nitride (TaN), or titanium tantalum nitride (TiTaN).
    Type: Application
    Filed: May 18, 2022
    Publication date: November 23, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Srinivas Gandikota, Elizabeth Mao, Tianyi Huang, Tengzhou Ma, Chi-Chou Lin, Yixiong Yang
  • Publication number: 20230377901
    Abstract: A method of forming a structure on a substrate is provided. The method includes depositing a dipole dopant containing (DDC) layer including a dipole dopant on a first and second region of a dielectric layer (DL) of the substrate. A hardmask (HM) is deposited over the DDC deposited on the first and the second regions. A patterned photoresist layer (PR) is formed over the HM. The PR includes a first portion that is positioned over the first region and an opening that is positioned to expose a portion of the HM that is disposed over the second region of the substrate. The HM and DDC within the second region are etched and at least a portion of the DL is exposed within the second region. The PR is removed and the substrate is annealed to diffuse the dipole dopant into a portion of the DL disposed in the first region.
    Type: Application
    Filed: April 26, 2023
    Publication date: November 23, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Steven C. H. HUNG, Srinivas GANDIKOTA, Yixiong YANG, Yong YANG
  • Patent number: 11817320
    Abstract: Implementations described herein generally relate to a method for forming a metal layer and to a method for forming an oxide layer on the metal layer. In one implementation, the metal layer is formed on a seed layer, and the seed layer helps the metal in the metal layer nucleate with small grain size without affecting the conductivity of the metal layer. The metal layer may be formed using plasma enhanced chemical vapor deposition (PECVD) and nitrogen gas may be flowed into the processing chamber along with the precursor gases. In another implementation, a barrier layer is formed on the metal layer in order to prevent the metal layer from being oxidized during subsequent oxide layer deposition process. In another implementation, the metal layer is treated prior to the deposition of the oxide layer in order to prevent the metal layer from being oxidized.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: November 14, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Susmit Singha Roy, Kelvin Chan, Hien Minh Le, Sanjay Kamath, Abhijit Basu Mallick, Srinivas Gandikota, Karthik Janakiraman