Patents by Inventor Stanley Pau

Stanley Pau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10466036
    Abstract: An imager utilizes a division of focal plane polarization and color camera to measure motion, depth and orientation of objects in a scene in real-time. In various examples, structured light, polarization-controlled discrete reflectors, and/or spatially varying discrete light sources are used to provide light of controlled polarization and color from an object in a scene to a camera. The camera utilizes a pixelated optical filter with a pattern of varying polarization filters across the pixel array, and optionally an integrated color filter pattern. Light measurements are processed to determine polarization state of light received from the object, whence orientation, position, and/or other properties of the object are determined. Systems are operable with a single camera. Applications include virtual reality, gaming, robotics, autonomous vehicles, tele-surgery, industrial automation, 3-D scanning, surveillance, and remote interaction.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: November 5, 2019
    Assignee: Arizona Board of Regents on Behalf of the University of Arizona
    Inventor: Stanley Pau
  • Patent number: 10451486
    Abstract: A polarization and color sensitive pixel device and a focal plane array made therefrom. Each incorporates a thick color/polarization filter stack and microlens array for visible (0.4-0.75 micron), near infrared (0.75-3 micron), mid infrared (3-8 micron) and long wave infrared (8-15 micron) imaging. A thick pixel filter has a thickness of between about one to 10× the operational wavelength, while a thick focal plane array filter is on the order of or larger than the size or up to 10× the pitch of the pixels in the focal plane array. The optical filters can be precisely fabricated on a wafer. A filter array can be mounted directly on top of an image sensor to create a polarization camera. Alternatively, the optical filters can be fabricated directly on the image sensor.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: October 22, 2019
    Assignee: Arizona Board of Regents on Behalf of the University of Arizona
    Inventor: Stanley Pau
  • Publication number: 20190197714
    Abstract: A polarization plenoptic camera that can acquire the polarization information of reflected light from an object in a single shot; i.e., in real time, to avoid issues such as motion blur and also avoid the additional system complexity that derives from mechanical scanning of a polarizer. The camera includes a polarization-sensitive focal plane array, a first microlens array having a pitch that is equal to a pitch of the pixel array; and either a second microlens array having a pitch that is greater than the pitch of the pixel array, a coded aperture mask, or a second microlens array and a coded aperture mask. A method for obtaining a plenoptic image of an object scene is disclosed.
    Type: Application
    Filed: May 3, 2017
    Publication date: June 27, 2019
    Applicant: Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Stanley Pau, Amit Ashok
  • Patent number: 10254453
    Abstract: Exemplary thin-film optical devices have first and second layer groups disposed as a layer stack on a substrate. The first layer group comprises a first PPN layer, a first LCP layer, and a first barrier layer all superposed. The second layer group is superposed relative to the first layer group, and includes a second PPN layer, a second LCP layer, and a second barrier layer all superposed. The first and second layer groups cooperate to polarize multiple wavelengths of an incident light flux in a broadband and/or wide-angle manner. Each of the layer groups has an alignment layer, a respective liquid-crystal polymer layer, and a barrier layer.
    Type: Grant
    Filed: November 27, 2015
    Date of Patent: April 9, 2019
    Assignee: Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Stanley Pau, Wei-Liang Hsu
  • Publication number: 20180188429
    Abstract: Compound dichroic polarizers (CDPs) include multiple component dichroic polarizers based on different dichroic dyes and oriented to have different eigenpolarization directions. The component dichroic polarizers can be fixed to each other or to a substrate such as an eyeglass lens. Selection of eigenpolarization orientation and spectrum in a CDP permits color encoding of different SOPs.
    Type: Application
    Filed: June 24, 2016
    Publication date: July 5, 2018
    Applicant: The Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Stanley Pau, Russell Chipman, Wei-Liang Hsu
  • Publication number: 20180180486
    Abstract: A polarization and color sensitive pixel device and a focal plane array made therefrom. Each incorporates a thick color/polarization filter stack and microlens array for visible (0.4-0.75 micron), near infrared (0.75-3 micron), mid infrared (3-8 micron) and long wave infrared (8-15 micron) imaging. A thick pixel filter has a thickness of between about one to 10× the operational wavelength, while a thick focal plane array filter is on the order of or larger than the size or up to 10× the pitch of the pixels in the focal plane array. The optical filters can be precisely fabricated on a wafer. A filter array can be mounted directly on top of an image sensor to create a polarization camera. Alternatively, the optical filters can be fabricated directly on the image sensor.
    Type: Application
    Filed: December 7, 2017
    Publication date: June 28, 2018
    Applicant: Arizona Board of Regents on Behalf of the University of Arizona
    Inventor: Stanley Pau
  • Publication number: 20180100731
    Abstract: An imager utilizes a division of focal plane polarization and color camera to measure motion, depth and orientation of objects in a scene in real-time. In various examples, structured light, polarization-controlled discrete reflectors, and/or spatially varying discrete light sources are used to provide light of controlled polarization and color from an object in a scene to a camera. The camera utilizes a pixelated optical filter with a pattern of varying polarization filters across the pixel array, and optionally an integrated color filter pattern. Light measurements are processed to determine polarization state of light received from the object, whence orientation, position, and/or other properties of the object are determined. Systems are operable with a single camera. Applications include virtual reality, gaming, robotics, autonomous vehicles, tele-surgery, industrial automation, 3-D scanning, surveillance, and remote interaction.
    Type: Application
    Filed: October 5, 2017
    Publication date: April 12, 2018
    Applicant: Arizona Board of Regents on Behalf of the University of Arizona
    Inventor: Stanley Pau
  • Patent number: 9823128
    Abstract: Multispectral imaging systems are disclosed. An exemplary multispectral imager includes a narrow-band absorptive filter array and a sensor array comprising a plurality of pixels. The narrow-band absorptive filter array has a plurality of filter elements, each filter element being associated with a pixel of the sensor array. The filter elements are organized into groups of N filter elements, where N is greater than three. Each filter element absorbs one narrow band and transmits N?1 narrow bands. The group of N filter elements absorbs all N narrow bands.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: November 21, 2017
    Assignee: Arizona Board of Regents on behalf of the University of Arizona
    Inventors: Stanley Pau, Amit Ashok
  • Patent number: 9671538
    Abstract: A linear photopolymerizable polymer (LPP) layer is situated to align liquid crystal molecules in a cholesteric liquid crystal polymer (Ch-LCP) layer situated at or on the LPP layers. The Ch-LCP layer includes a patterned area and an unpatterned area. The patterned area and the un-patterned area have different optical properties. The Ch-LCP layer can be tuned to transmit light of a desired frequency and handedness. Single and multiple-layered LPP/Ch-LCP and/or LPP/LCP structures can be provided as patterned polarizers, patterned retarders and other devices.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: June 6, 2017
    Assignee: The Arizona Board of Regents on behalf of the University of Arizona
    Inventors: Stanley Pau, Wei-Liang Hsu
  • Publication number: 20160245698
    Abstract: Multispectral imaging systems are disclosed. An exemplary multispectral imager includes a narrow-band absorptive filter array and a sensor array comprising a plurality of pixels. The narrow-band absorptive filter array has a plurality of filter elements, each filter element being associated with a pixel of the sensor array. The filter elements are organized into groups of N filter elements, where N is greater than three. Each filter element absorbs one narrow band and transmits N?1 narrow bands. The group of N filter elements absorbs all N narrow bands.
    Type: Application
    Filed: October 16, 2014
    Publication date: August 25, 2016
    Inventors: Stanley Pau, Amit Ashok
  • Publication number: 20160170110
    Abstract: Exemplary thin-film optical devices have first and second layer groups disposed as a layer stack on a substrate. The first layer group comprises a first PPN layer, a first LCP layer, and a first barrier layer all superposed. The second layer group is superposed relative to the first layer group, and includes a second PPN layer, a second LCP layer, and a second barrier layer all superposed. The first and second layer groups cooperate to polarize multiple wavelengths of an incident light flux in a broadband and/or wide-angle manner. Each of the layer groups has an alignment layer, a respective liquid-crystal polymer layer, and a barrier layer.
    Type: Application
    Filed: November 27, 2015
    Publication date: June 16, 2016
    Applicant: The Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Stanley Pau, Wei-Liang Hsu
  • Publication number: 20150301249
    Abstract: A linear photopolymerizable polymer (LPP) layer is situated to align liquid crystal molecules in a cholesteric liquid crystal polymer (Ch-LCP) layer situated at or on the LPP layers. The Ch-LCP layer includes a patterned area and an unpatterned area. The patterned area and the un-patterned area have different optical properties. The Ch-LCP layer can be tuned to transmit light of a desired frequency and handedness. Single and multiple-layered LPP/Ch-LCP and/or LPP/LCP structures can be provided as patterned polarizers, patterned retarders and other devices.
    Type: Application
    Filed: November 18, 2013
    Publication date: October 22, 2015
    Inventors: Stanley Pau, Wei-Liang Hsu
  • Patent number: 8866997
    Abstract: Linear photo-oriented polymer (LPP) layers are situated to align liquid crystals in a liquid crystal polymer (LCP) layer situated at or on the LPP layers. The LCP layer can include a guest such as a fluorophore that aligns with the liquid crystal so as to emit polarized fluorescence in response to an excitation beam. Layer LPP/LCP structures can be provided as light emitters, patterned polarizers, patterned retarders and other devices based on selection of one or more guest materials included in the LCP and alignable with the liquid crystal.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: October 21, 2014
    Assignee: Arizona Board of Regents on behalf of the University of Arizona
    Inventors: Stanley Pau, Arshad S. Sayyad, Graham B. Myhre
  • Patent number: 8823848
    Abstract: A polarization camera includes a microlement polarizer that is situated in proximity to a focal plane array. The microlement polarizer is selectively scanned with respect to an optical image direct to the focal plane array, and an image processor stores a set of images associated with the scanning. Based on the stored images, a polarization image can be produced and displayed. A periodic microelement polarizer modulates the individual images of the set, and these images can be processed by filtering in the spatial frequency domain to isolate contributions associated with one or a combination of Stokes parameters. After filtering, Stokes parameter based images can be obtained by demodulating and inverse Fourier transforming the filtered frequency domain data.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: September 2, 2014
    Assignee: The Arizona Board of Regents on behalf of the University of Arizona
    Inventors: Russell A. Chipman, Stanley Pau, J. Scott Tyo, Bradley M. Ratliff
  • Patent number: 8414833
    Abstract: Apparatus and method for increasing the concentration of a chemical substance in a fluid comprise a micro-fluidic elongated channel formed in a substrate, with the channel being in fluid-flow communication with an ambient region along its elongated dimension. In general, the fluid includes first and second chemical substances having different vapor pressures. The apparatus includes an evaporation controller for increasing the evaporation rate of the fluid from the channel into the ambient region, thereby increasing the concentration of the lower vapor pressure (LVP) substance in the portion of the fluid remaining in the channel and increasing the concentration of the higher vapor pressure (HVP) substance in the portion of the fluid evaporated into the ambient region.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: April 9, 2013
    Assignee: Alcatel Lucent
    Inventors: David John Bishop, John VanAtta Gates, Marc Scott Hodes, Avinoam Komblit, Stanley Pau, Brijesh Vyas
  • Publication number: 20120128546
    Abstract: Apparatus and method for increasing the concentration of a chemical substance in a fluid comprise a micro-fluidic elongated channel formed in a substrate, with the channel being in fluid-flow communication with an ambient region along its elongated dimension. In general, the fluid includes first and second chemical substances having different vapor pressures. The apparatus includes an evaporation controller for increasing the evaporation rate of the fluid from the channel into the ambient region, thereby increasing the concentration of the lower vapor pressure (LVP) substance in the portion of the fluid remaining in the channel and increasing the concentration of the higher vapor pressure (HVP) substance in the portion of the fluid evaporated into the ambient region.
    Type: Application
    Filed: January 30, 2012
    Publication date: May 24, 2012
    Inventors: David John Bishop, John VanAtta Gates, Marc Scott Hodes, Avinoam Komblit, Stanley Pau, Brijesh Vyas
  • Publication number: 20120105783
    Abstract: Linear photo-oriented polymer (LPP) layers are situated to align liquid crystals in a liquid crystal polymer (LCP) layer situated at or on the LPP layers. The LCP layer can include a guest such as a fluorophore that aligns with the liquid crystal so as to emit polarized fluorescence in response to an excitation beam. Layer LPP/LCP structures can be provided as light emitters, patterned polarizers, patterned retarders and other devices based on selection of one or more guest materials included in the LCP and alignable with the liquid crystal.
    Type: Application
    Filed: November 2, 2011
    Publication date: May 3, 2012
    Inventors: Stanley Pau, Arshad S. Sayyad, Graham B. Myhre
  • Publication number: 20120075513
    Abstract: A polarization camera includes a microlement polarizer that is situated in proximity to a focal plane array. The microlement polarizer is selectively scanned with respect to an optical image direct to the focal plane array, and an image processor stores a set of images associated with the scanning. Based on the stored images, a polarization image can be produced and displayed. A periodic microelement polarizer modulates the individual images of the set, and these images can be processed by filtering in the spatial frequency domain to isolate contributions associated with one or a combination of Stokes parameters. After filtering, Stokes parameter based images can be obtained by demodulating and inverse Fourier transforming the filtered frequency domain data.
    Type: Application
    Filed: June 11, 2010
    Publication date: March 29, 2012
    Inventors: Russell A. Chipman, Stanley Pau, J. Scott Tyo, Bradley M. Ratliff
  • Patent number: 7780813
    Abstract: A chemical reactor includes two or more substrates joined along planar surfaces thereof, a chemical reaction chamber located between the two or more substrates, and a pair of electrodes on one of the substrates and along a wall of the reaction chamber. Each substrate is a substantially dielectric or semiconductor substrate. The chemical reaction chamber has a hollow interior, one or more input ports to transport a gas into the hollow interior, and an output port to transport a byproduct out of the hollow interior.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: August 24, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Stanley Pau, Donald Milan Tennant
  • Patent number: 7678495
    Abstract: A method and apparatus are disclosed wherein a battery comprises at least one electrode formed from a graphitic carbon nanostructured surface wherein the nanostructured surface consists of a plurality of nanoposts formed from graphitic carbon such that the graphitic nanoposts serve both as an operational feature (i.e., dielectric/electrode) and control feature of the battery itself. In one embodiment, the nanostructured surface consists of a plurality of nanoposts wherein a select portion of each nanopost is formed to serve as the dielectric of the nanostructured battery, and the balance of each nanopost is utilized to impart the control features to the nanostructured battery.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: March 16, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Paul Robert Kolodner, Thomas Nikita Krupenkine, Alan Michael Lyons, Stanley Pau, Joseph Ashley Taylor, Brijesh Vyas