Patents by Inventor Stanley Pau

Stanley Pau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150301249
    Abstract: A linear photopolymerizable polymer (LPP) layer is situated to align liquid crystal molecules in a cholesteric liquid crystal polymer (Ch-LCP) layer situated at or on the LPP layers. The Ch-LCP layer includes a patterned area and an unpatterned area. The patterned area and the un-patterned area have different optical properties. The Ch-LCP layer can be tuned to transmit light of a desired frequency and handedness. Single and multiple-layered LPP/Ch-LCP and/or LPP/LCP structures can be provided as patterned polarizers, patterned retarders and other devices.
    Type: Application
    Filed: November 18, 2013
    Publication date: October 22, 2015
    Inventors: Stanley Pau, Wei-Liang Hsu
  • Patent number: 8866997
    Abstract: Linear photo-oriented polymer (LPP) layers are situated to align liquid crystals in a liquid crystal polymer (LCP) layer situated at or on the LPP layers. The LCP layer can include a guest such as a fluorophore that aligns with the liquid crystal so as to emit polarized fluorescence in response to an excitation beam. Layer LPP/LCP structures can be provided as light emitters, patterned polarizers, patterned retarders and other devices based on selection of one or more guest materials included in the LCP and alignable with the liquid crystal.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: October 21, 2014
    Assignee: Arizona Board of Regents on behalf of the University of Arizona
    Inventors: Stanley Pau, Arshad S. Sayyad, Graham B. Myhre
  • Patent number: 8823848
    Abstract: A polarization camera includes a microlement polarizer that is situated in proximity to a focal plane array. The microlement polarizer is selectively scanned with respect to an optical image direct to the focal plane array, and an image processor stores a set of images associated with the scanning. Based on the stored images, a polarization image can be produced and displayed. A periodic microelement polarizer modulates the individual images of the set, and these images can be processed by filtering in the spatial frequency domain to isolate contributions associated with one or a combination of Stokes parameters. After filtering, Stokes parameter based images can be obtained by demodulating and inverse Fourier transforming the filtered frequency domain data.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: September 2, 2014
    Assignee: The Arizona Board of Regents on behalf of the University of Arizona
    Inventors: Russell A. Chipman, Stanley Pau, J. Scott Tyo, Bradley M. Ratliff
  • Patent number: 8414833
    Abstract: Apparatus and method for increasing the concentration of a chemical substance in a fluid comprise a micro-fluidic elongated channel formed in a substrate, with the channel being in fluid-flow communication with an ambient region along its elongated dimension. In general, the fluid includes first and second chemical substances having different vapor pressures. The apparatus includes an evaporation controller for increasing the evaporation rate of the fluid from the channel into the ambient region, thereby increasing the concentration of the lower vapor pressure (LVP) substance in the portion of the fluid remaining in the channel and increasing the concentration of the higher vapor pressure (HVP) substance in the portion of the fluid evaporated into the ambient region.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: April 9, 2013
    Assignee: Alcatel Lucent
    Inventors: David John Bishop, John VanAtta Gates, Marc Scott Hodes, Avinoam Komblit, Stanley Pau, Brijesh Vyas
  • Publication number: 20120128546
    Abstract: Apparatus and method for increasing the concentration of a chemical substance in a fluid comprise a micro-fluidic elongated channel formed in a substrate, with the channel being in fluid-flow communication with an ambient region along its elongated dimension. In general, the fluid includes first and second chemical substances having different vapor pressures. The apparatus includes an evaporation controller for increasing the evaporation rate of the fluid from the channel into the ambient region, thereby increasing the concentration of the lower vapor pressure (LVP) substance in the portion of the fluid remaining in the channel and increasing the concentration of the higher vapor pressure (HVP) substance in the portion of the fluid evaporated into the ambient region.
    Type: Application
    Filed: January 30, 2012
    Publication date: May 24, 2012
    Inventors: David John Bishop, John VanAtta Gates, Marc Scott Hodes, Avinoam Komblit, Stanley Pau, Brijesh Vyas
  • Publication number: 20120105783
    Abstract: Linear photo-oriented polymer (LPP) layers are situated to align liquid crystals in a liquid crystal polymer (LCP) layer situated at or on the LPP layers. The LCP layer can include a guest such as a fluorophore that aligns with the liquid crystal so as to emit polarized fluorescence in response to an excitation beam. Layer LPP/LCP structures can be provided as light emitters, patterned polarizers, patterned retarders and other devices based on selection of one or more guest materials included in the LCP and alignable with the liquid crystal.
    Type: Application
    Filed: November 2, 2011
    Publication date: May 3, 2012
    Inventors: Stanley Pau, Arshad S. Sayyad, Graham B. Myhre
  • Publication number: 20120075513
    Abstract: A polarization camera includes a microlement polarizer that is situated in proximity to a focal plane array. The microlement polarizer is selectively scanned with respect to an optical image direct to the focal plane array, and an image processor stores a set of images associated with the scanning. Based on the stored images, a polarization image can be produced and displayed. A periodic microelement polarizer modulates the individual images of the set, and these images can be processed by filtering in the spatial frequency domain to isolate contributions associated with one or a combination of Stokes parameters. After filtering, Stokes parameter based images can be obtained by demodulating and inverse Fourier transforming the filtered frequency domain data.
    Type: Application
    Filed: June 11, 2010
    Publication date: March 29, 2012
    Inventors: Russell A. Chipman, Stanley Pau, J. Scott Tyo, Bradley M. Ratliff
  • Patent number: 7780813
    Abstract: A chemical reactor includes two or more substrates joined along planar surfaces thereof, a chemical reaction chamber located between the two or more substrates, and a pair of electrodes on one of the substrates and along a wall of the reaction chamber. Each substrate is a substantially dielectric or semiconductor substrate. The chemical reaction chamber has a hollow interior, one or more input ports to transport a gas into the hollow interior, and an output port to transport a byproduct out of the hollow interior.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: August 24, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Stanley Pau, Donald Milan Tennant
  • Patent number: 7678495
    Abstract: A method and apparatus are disclosed wherein a battery comprises at least one electrode formed from a graphitic carbon nanostructured surface wherein the nanostructured surface consists of a plurality of nanoposts formed from graphitic carbon such that the graphitic nanoposts serve both as an operational feature (i.e., dielectric/electrode) and control feature of the battery itself. In one embodiment, the nanostructured surface consists of a plurality of nanoposts wherein a select portion of each nanopost is formed to serve as the dielectric of the nanostructured battery, and the balance of each nanopost is utilized to impart the control features to the nanostructured battery.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: March 16, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Paul Robert Kolodner, Thomas Nikita Krupenkine, Alan Michael Lyons, Stanley Pau, Joseph Ashley Taylor, Brijesh Vyas
  • Patent number: 7521674
    Abstract: Apparatus and method for trapping uncharged multi-pole particles comprises a bound cavity for receiving the particles, and a multiplicity of electrodes coupled to the cavity for producing an electric field in the cavity. In a preferred embodiment, the electrodes are configured to produce in the electric field potential both a multi-pole (e.g., dipole) component that aligns the particles predominantly along an axis of the cavity and a higher order multi-pole (e.g., hexapole) component that forms a trapping region along the axis. In one embodiment, the electrodes and/or the particles are cooled to a cryogenic temperature.
    Type: Grant
    Filed: September 1, 2007
    Date of Patent: April 21, 2009
    Assignee: Alcatel-Lucent USA Inc.
    Inventor: Stanley Pau
  • Patent number: 7435391
    Abstract: A chemical reactor includes two substrates that are joined along a surface and a chemical reaction chamber formed between the substrates. The chemical reaction chamber has a hollow interior and one or more light reflectors located along walls of the hollow interior. The chemical reaction chamber has one or more inputs to transport fluid into the hollow interior and an output to transport fluid out of the hollow interior. The one or more light reflectors cause light rays to make multiple crossings of the hollow interior as a result of reflections off the one or more reflectors.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: October 14, 2008
    Assignee: Lucent Technologies Inc.
    Inventors: Chien-Shing Pai, Stanley Pau
  • Patent number: 7391936
    Abstract: Microfluidic optical sensor comprising: an optical waveguide capable of propagating light from an optical input port to an optical output port, the optical waveguide comprising an optical waveguide interaction region; a fluidic channel capable of conducting a fluid from a fluid input port to a fluid output port, the fluidic channel comprising a fluidic channel region; the fluidic channel region being separated from the optical waveguide interaction region by an interposed spacing material configured to transmit an evanescent field of the light through the spacing material between the optical waveguide interaction region and the fluidic channel region. Microfluidic optical sensor comprising an optical resonator. Methods for making microfluidic optical sensors.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: June 24, 2008
    Assignee: Lucent Technologies, Inc.
    Inventors: Stanley Pau, Mark P. Earnshaw
  • Publication number: 20070295896
    Abstract: Apparatus and method for trapping uncharged multi-pole particles comprises a bound cavity for receiving the particles, and a multiplicity of electrodes coupled to the cavity for producing an electric field in the cavity. In a preferred embodiment, the electrodes are configured to produce in the electric field potential both a multi-pole (e.g., dipole) component that aligns the particles predominantly along an axis of the cavity and a higher order multi-pole (e.g., hexapole) component that forms a trapping region along the axis. In one embodiment, the electrodes and/or the particles are cooled to a cryogenic temperature.
    Type: Application
    Filed: September 1, 2007
    Publication date: December 27, 2007
    Inventor: Stanley Pau
  • Publication number: 20070241066
    Abstract: Apparatus and method for increasing the concentration of a chemical substance in a fluid comprise a micro-fluidic elongated channel formed in a substrate, with the channel being in fluid-flow communication with an ambient region along its elongated dimension. In general, the fluid includes first and second chemical substances having different vapor pressures. The apparatus includes an evaporation controller for increasing the evaporation rate of the fluid from the channel into the ambient region, thereby increasing the concentration of the higher vapor pressure (HVP) substance in the portion of the fluid remaining in the channel and increasing the concentration of the lower vapor pressure (LVP) substance in the portion of the fluid evaporated into the ambient region.
    Type: Application
    Filed: April 9, 2007
    Publication date: October 18, 2007
    Inventors: David Bishop, John Gates, Marc Hodes, Avinoam Kornblit, Stanley Pau, Brijesh Vyas
  • Patent number: 7276689
    Abstract: Apparatus and method for trapping uncharged multi-pole particles comprises a bound cavity for receiving the particles, and a multiplicity of electrodes coupled to the cavity for producing an electric field in the cavity. In a preferred embodiment, the electrodes are configured to produce in the electric field potential both a multi-pole (e.g., dipole) component that aligns the particles predominantly along an axis of the cavity and a higher order multi-pole (e.g., hexapole) component that forms a trapping region along the axis. In one embodiment, the electrodes and/or the particles are cooled to a cryogenic temperature.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: October 2, 2007
    Assignee: Lucent Technologies Inc.
    Inventor: Stanley Pau
  • Patent number: 7220388
    Abstract: Apparatus and method for increasing the concentration of a chemical substance in a fluid comprise a micro-fluidic elongated channel formed in a substrate, with the channel being in fluid-flow communication with an ambient region along its elongated dimension. In general, the fluid includes first and second chemical substances having different vapor pressures. The apparatus includes an evaporation controller for increasing the evaporation rate of the fluid from the channel into the ambient region, thereby increasing the concentration of the higher vapor pressure (HVP) substance in the portion of the fluid remaining in the channel and increasing the concentration of the lower vapor pressure (LVP) substance in the portion of the fluid evaporated into the ambient region.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: May 22, 2007
    Assignee: Lucent Technologies Inc.
    Inventors: David John Bishop, John VanAtta Gates, Marc Scott Hodes, Avinoam Kornblit, Stanley Pau, Brijesh Vyas
  • Patent number: 7217922
    Abstract: A micro-miniature ion trap device comprises a wafer (or substrate) having a major surface, a multiplicity of electrodes forming a micro-miniature ion trap in a region adjacent the major surface when voltage is applied to the electrodes, characterized in that the multiplicity includes a first, planar annular electrode located over and rigidly affixed to the major surface, and at least one second, planar annular electrode located over and rigidly affixed to the major surface, the at least one second electrode being concentric with the first electrode. The at least one second electrode may be completely annular, in that the annulus forms a closed geometric shape, or it may be partially annular, in that the annulus has a slot or opening allowing access to the first electrode. In accordance with a preferred embodiment of our invention, the at least one second electrode is C-shaped, and the angle subtended by the C-shape is greater than 180 degrees.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: May 15, 2007
    Assignee: Lucent Technologies Inc.
    Inventors: Matthew Douglas Apau Jachowski, Yee Leng Low, Stanley Pau
  • Publication number: 20070075218
    Abstract: Apparatus for storing an optical image of an object comprises an imaging device having a multiplicity of pixels, each pixel including a light sensor and a multiplicity of storage cells coupled to the sensor. A lens system focuses light from the object onto the imaging device. Within each pixel a first one of its storage cells is configured to store data corresponding to a first exposure of its sensor to light from the object, and a second one of its storage cells is configured to store data corresponding to a second exposure of its sensor to light from the object. In a preferred embodiment, the pixels are arranged in an array extending along a first direction, and during the time interval between the first and second exposures, a translator is configured to produce, in a second direction, a relative translation or shift between the imaging device and the focal point of the lens system. In one embodiment, the second direction is traverse to the first direction.
    Type: Application
    Filed: October 4, 2005
    Publication date: April 5, 2007
    Inventors: John Gates, Carl Nuzman, Stanley Pau
  • Patent number: 7180078
    Abstract: An apparatus for an ion trap includes an electrically conductive substrate having top and bottom surfaces and having vias that cross from the top surface to the bottom surface. The apparatus includes a pair of planar first electrodes supported over said top surface and second electrodes having planar surfaces. The planar surfaces are located over said top surface, and portions of the planar surfaces are located laterally adjacent to said planar first electrodes. One of the second electrodes includes a portion that is located in one of the vias and traverses the substrate.
    Type: Grant
    Filed: February 1, 2005
    Date of Patent: February 20, 2007
    Assignee: Lucent Technologies Inc.
    Inventors: Stanley Pau, Richart Elliott Slusher
  • Publication number: 20070000613
    Abstract: A chemical reactor includes two or more substrates joined along planar surfaces thereof, a chemical reaction chamber located between the two or more substrates, and a pair of electrodes on one of the substrates and along a wall of the reaction chamber. Each substrate is a substantially dielectric or semiconductor substrate. The chemical reaction chamber has a hollow interior, one or more input ports to transport a gas into the hollow interior, and an output port to transport a byproduct out of the hollow interior.
    Type: Application
    Filed: June 9, 2005
    Publication date: January 4, 2007
    Inventors: Stanley Pau, Donald Tennant