Patents by Inventor Stefan Pinter

Stefan Pinter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11906383
    Abstract: A micromechanical sensor device and a corresponding manufacturing method are described. The micromechanical sensor device is fitted with a substrate including a front side and a rear side; a micromechanical sensor chip including a sensor area attached to the front side of the substrate; and a capping unit attached to the front side of the substrate, which is formed at least partially by an ASIC chip. The capping unit surrounds the micromechanical sensor chip in such a way that a cavity closed toward the front side of the substrate is formed between the sensor area of the micromechanical sensor chip and the ASIC chip. A mold package is formed above the capping unit.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: February 20, 2024
    Assignee: ROBERT BOSCH GMBH
    Inventors: Stefan Pinter, Nico Greiner
  • Patent number: 11584640
    Abstract: A method for producing a micromechanical device having inclined optical windows, and a corresponding micromechanical device are described. The production method includes: providing a first substrate having a front side and a rear side; forming a plurality of spaced-apart through holes in the first substrate which are arranged along a plurality of spaced-apart rows in the first substrate; forming a respective continuous beveled groove along each of the rows, the grooves defining a seat for the inclined optical windows; and inserting the optical windows into the grooves above the through holes.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: February 21, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Benjamin Steuer, Stefan Pinter
  • Patent number: 11479461
    Abstract: A production method for a micromechanical device having inclined optical windows. First and second substrates are provided. A plurality of through-holes is produced in the first and second substrate such that for each through-hole in the first substrate a congruent through-hole is produced in the second substrate, which overlap when the first substrate is placed over the second substrate. A slanted edge region is produced around a respective through-hole in the first and second substrate, the edge region being inclined at a window angle, two slanted edge regions situated on top of each other being congruent in a top view and being inclined at the same window angle. A window foil is provided having a structured window region, which covers the through-hole in a top view of the window foil in each case, the window foil forming an optical window slanted at the window angle above the respective through-hole.
    Type: Grant
    Filed: May 11, 2019
    Date of Patent: October 25, 2022
    Assignee: Robert Bosch GmbH
    Inventor: Stefan Pinter
  • Publication number: 20220329039
    Abstract: A micromechanical optical component having a substrate, a spacer, and a cover, which are positioned one above the other and delimit a hermetically sealed cavity. A semiconductor laser is situated in the cavity, on the substrate. An optical element, which is attached to the spacer, is positioned in a beam path of the semiconductor laser. A method for manufacturing a micromechanical optical component is also described.
    Type: Application
    Filed: July 28, 2020
    Publication date: October 13, 2022
    Inventor: Stefan Pinter
  • Publication number: 20220283427
    Abstract: A micromechanical oscillation system that is designed as a micromirror system. The micromechanical oscillation system includes a micromechanical oscillating body that includes at least one micromirror. The micromechanical oscillating body is designed to oscillate about an oscillation axis, in particular at a resonant frequency of the oscillating body. The micromechanical oscillating body has a total mass made up of mass elements. The mass elements are distributed as a function of a lateral horizontal spacing of the mass elements from the oscillation axis.
    Type: Application
    Filed: October 1, 2020
    Publication date: September 8, 2022
    Inventors: Eugene Moliere Tanguep Njiokep, Frank Schatz, Helmut Grutzeck, Stefan Pinter, Johannes Baader, Rainer Straub, Timo Schary
  • Patent number: 11360270
    Abstract: An optical switch includes a bus waveguide supported by a substrate, an actuation electrode supported by the substrate, the actuation electrode having fins that protrude in a direction perpendicular to the substrate and to the bus waveguide, and a reaction electrode having interdigitated fins configured to form a comb drive with the actuation electrode. When a voltage difference between the reaction electrode and the actuation electrode is less than a lower threshold, the reaction electrode is positioned a first distance from the bus waveguide, when the voltage difference between the reaction electrode and the actuation electrode is greater than an upper threshold, the reaction electrode is positioned a second distance from the bus waveguide, and the second distance is less than the first distance.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: June 14, 2022
    Inventors: Ning Wang, Christoph Schelling, Alexander Huebel, Hartmut Kueppers, Stefan Pinter, Uma Krishnamoorthy
  • Patent number: 11340399
    Abstract: An optical switch includes a first bus waveguide supported by a substrate, an optical antenna suspended over the first bus waveguide via a spring, and interdigitated electrodes coupling the substrate with optical antenna and configured to control a position of the optical antenna relative to the first bus waveguide. When a voltage difference applied to the interdigitated electrodes is less than a lower threshold, the optical antenna is at a first position offset from the first bus waveguide, when the voltage difference applied to the interdigitated electrodes is greater than an upper threshold, the optical antenna is at a second position offset from the first bus waveguide, and the offset at the second position is greater than at the first position.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: May 24, 2022
    Inventors: Ning Wang, Alexander Huebel, Christoph Schelling, Jan Niklas Caspers, Hartmut Kueppers, Stefan Pinter
  • Patent number: 11300852
    Abstract: An optical switch includes a bus waveguide supported by a substrate, a coupling waveguide suspended over the bus waveguide, a reaction electrode coupled with, and adjacent to, the coupling waveguide, an actuation electrode supported by the substrate and configured to control a position of the coupling waveguide relative to the bus waveguide via the reaction electrode, and an optical antenna coupled with the coupling waveguide and disposed at a fixed distance from the bus waveguide. When a voltage difference between the reaction electrode and the actuation electrode is less than a lower threshold, the coupling waveguide is positioned a first distance from the bus waveguide, when the voltage difference between the reaction electrode and the actuation electrode is greater than an upper threshold, the coupling waveguide is positioned a second distance from the bus waveguide, and the second distance is less than the first distance.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: April 12, 2022
    Inventors: Ning Wang, Alexander Huebel, Christoph Schelling, Jan Niklas Caspers, Hartmut Kueppers, Stefan Pinter
  • Publication number: 20220041436
    Abstract: A method for producing a plurality of sensor devices. The method includes: furnishing a substrate having contact points in a plurality of predetermined regions for sensor chips; disposing the sensor chips in the predetermined regions on the substrate, and electrically contacting the sensor chips to the contact points; attaching a frame structure with an adhesive material on the substrate and between the sensor chips, the frame structure proceeding laterally around the sensor chips, the frame structure extending, after attachment, vertically beyond the sensor chips and forming a respective cavity for at least one of the sensor chips, and a membrane spanning at least one of the cavities for the sensor chips so as to cover it; and singulating the substrate, or the frame structure and the substrate, around the respective cavities into several sensor devices.
    Type: Application
    Filed: January 24, 2020
    Publication date: February 10, 2022
    Inventors: Daniel Haug, Michael Knauss, Sebastian Schuler-Watkins, Stefan Pinter, Tobias Henn, Raschid Baraki
  • Publication number: 20220004078
    Abstract: An optical switch includes a bus waveguide supported by a substrate, a coupling waveguide suspended over the bus waveguide, a reaction electrode coupled with, and adjacent to, the coupling waveguide, an actuation electrode supported by the substrate and configured to control a position of the coupling waveguide relative to the bus waveguide via the reaction electrode, and an optical antenna coupled with the coupling waveguide and disposed at a fixed distance from the bus waveguide. When a voltage difference between the reaction electrode and the actuation electrode is less than a lower threshold, the coupling waveguide is positioned a first distance from the bus waveguide, when the voltage difference between the reaction electrode and the actuation electrode is greater than an upper threshold, the coupling waveguide is positioned a second distance from the bus waveguide, and the second distance is less than the first distance.
    Type: Application
    Filed: July 2, 2020
    Publication date: January 6, 2022
    Inventors: Ning Wang, Alexander Huebel, Christoph Schelling, John Niklas Caspers, Hartmut Kueppers, Stefan Pinter
  • Publication number: 20220003842
    Abstract: A single chip LIDAR module includes a laser, a photo diode, a photonic integrated circuit (PIC), a lens, and a housing. The laser is configured to output light at a predetermined wavelength. The photo diode is configured to detect light energy at the predetermined wavelength. The PIC is coupled with the laser and photo diode, and is integrated with a MEMS switch array that includes an optical antenna configured to diffract light at the predetermined wavelength. The lens is arranged over the PIC. The housing is configured to encompass the laser, the photo diode, and the PIC, and having a window configured to pass light associated with the PIC.
    Type: Application
    Filed: July 2, 2020
    Publication date: January 6, 2022
    Inventors: Ning Wang, Hartmut Kueppers, Stefan Pinter, Alexander Huebel, Christoph Schelling, Jan Niklas Caspers
  • Publication number: 20220003925
    Abstract: An optical switch includes a first bus waveguide supported by a substrate, an optical antenna suspended over the first bus waveguide via a spring, and interdigitated electrodes coupling the substrate with optical antenna and configured to control a position of the optical antenna relative to the first bus waveguide. When a voltage difference applied to the interdigitated electrodes is less than a lower threshold, the optical antenna is at a first position offset from the first bus waveguide, when the voltage difference applied to the interdigitated electrodes is greater than an upper threshold, the optical antenna is at a second position offset from the first bus waveguide, and the offset at the second position is greater than at the first position.
    Type: Application
    Filed: July 2, 2020
    Publication date: January 6, 2022
    Inventors: Ning Wang, Alexander Huebel, Christoph Schelling, Jan Niklas Caspers, Hartmut Kueppers, Stefan Pinter
  • Publication number: 20220003936
    Abstract: An optical switch includes a bus waveguide supported by a substrate, an actuation electrode supported by the substrate, the actuation electrode having fins that protrude in a direction perpendicular to the substrate and to the bus waveguide, and a reaction electrode having interdigitated fins configured to form a comb drive with the actuation electrode. When a voltage difference between the reaction electrode and the actuation electrode is less than a lower threshold, the reaction electrode is positioned a first distance from the bus waveguide, when the voltage difference between the reaction electrode and the actuation electrode is greater than an upper threshold, the reaction electrode is positioned a second distance from the bus waveguide, and the second distance is less than the first distance.
    Type: Application
    Filed: July 2, 2020
    Publication date: January 6, 2022
    Inventors: Ning Wang, Christoph Schelling, Alexander Huebel, Hartmut Kueppers, Stefan Pinter, Uma Krishnamoorthy
  • Publication number: 20210348976
    Abstract: A micromechanical sensor device and a corresponding manufacturing method are described. The micromechanical sensor device is fitted with a substrate including a front side and a rear side; a micromechanical sensor chip including a sensor area attached to the front side of the substrate; and a capping unit attached to the front side of the substrate, which is formed at least partially by an ASIC chip. The capping unit surrounds the micromechanical sensor chip in such a way that a cavity closed toward the front side of the substrate is formed between the sensor area of the micromechanical sensor chip and the ASIC chip. A mold package is formed above the capping unit.
    Type: Application
    Filed: January 20, 2020
    Publication date: November 11, 2021
    Inventors: Stefan Pinter, Nico Greiner
  • Patent number: 11130672
    Abstract: A micromechanical apparatus and a corresponding production method are described. The micromechanical apparatus encompasses a base substrate having a front side and a rear side; and a cap substrate, at least one surrounding trench having non-flat side walls being embodied in the front side of the base substrate; the front side of the base substrate and the trench being coated with at least one metal layer; the non-flat side walls of the trench being covered nonconformingly with the metal so that they do not form an electrical current path in a direction extending perpendicularly to the front side; and a closure, in particular a seal-glass closure, being embodied in the region of the trench between the base substrate and the cap substrate.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: September 28, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Baader, Nicolas Schorr, Rainer Straub, Stefan Pinter, Tina Steigert
  • Patent number: 11124412
    Abstract: A manufacturing method for a micromechanical window structure including the steps: providing a substrate, the substrate having a front side and a rear side; forming a first recess on the front side; forming a coating on the front side and on the first recess; and forming a second recess on the rear side, so that the coating is at least partially exposed, whereby a window is formed by the exposed area of the coatings.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: September 21, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Joerg Muchow, Rainer Straub, Stefan Pinter
  • Patent number: 11066295
    Abstract: A micromechanical component having a mount, an adjustable element, which is connected via at least one spring to the mount, and an actuator device, a first oscillatory motion of the adjustable element about a first axis of rotation and simultaneously a second oscillatory motion of the adjustable element, which is set into the first oscillatory motion, being excitable about a second axis of rotation in response to the actuator device; and the adjustable element being configured by the at least one spring to be adjustable on the mount in such a way that the adjustable element is adjustable by a resulting angular momentum about a rotational axis, which is oriented orthogonally to the first axis of rotation and orthogonally to second axis of rotation. Also, a method for manufacturing a micromechanical component. Moreover, a method for exciting a motion of an adjustable element about a rotational axis.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: July 20, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Philip Kaupmann, Stefan Pinter, Helmut Grutzeck, Jochen Franz, Joerg Muchow
  • Publication number: 20210198102
    Abstract: A production method for a micromechanical device having inclined optical windows. First and second substrates are provided. A plurality of through-holes is produced in the first and second substrate such that for each through-hole in the first substrate a congruent through-hole is produced in the second substrate, which overlap when the first substrate is placed over the second substrate. A slanted edge region is produced around a respective through-hole in the first and second substrate, the edge region being inclined at a window angle, two slanted edge regions situated on top of each other being congruent in a top view and being inclined at the same window angle. A window foil is provided having a structured window region, which covers the through-hole in a top view of the window foil in each case, the window foil forming an optical window slanted at the window angle above the respective through-hole.
    Type: Application
    Filed: May 11, 2019
    Publication date: July 1, 2021
    Inventor: Stefan Pinter
  • Patent number: 10996461
    Abstract: A method for manufacturing a protective wafer including a frame wafer and an optical window, and to a method for manufacturing a micromechanical device including such a protective wafer having an inclined optical window. Also described are a protective wafer including a frame wafer and an optical window, and a micromechanical device including a MEMS wafer and such a protective wafer, which delimit a cavity, the protective wafer including an inclined optical window.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: May 4, 2021
    Assignee: Robert Bosch GmbH
    Inventor: Stefan Pinter
  • Publication number: 20200391998
    Abstract: A method for producing a micromechanical device having inclined optical windows, and a corresponding micromechanical device are described. The production method includes: providing a first substrate having a front side and a rear side; forming a plurality of spaced-apart through holes in the first substrate which are arranged along a plurality of spaced-apart rows in the first substrate; forming a respective continuous beveled groove along each of the rows, the grooves defining a seat for the inclined optical windows; and inserting the optical windows into the grooves above the through holes.
    Type: Application
    Filed: March 7, 2019
    Publication date: December 17, 2020
    Inventors: Benjamin Steuer, Stefan Pinter