Patents by Inventor Stefan Pinter

Stefan Pinter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200361765
    Abstract: A micromechanical apparatus and a corresponding production method are described. The micromechanical apparatus encompasses a base substrate having a front side and a rear side; and a cap substrate, at least one surrounding trench having non-flat side walls being embodied in the front side of the base substrate; the front side of the base substrate and the trench being coated with at least one metal layer; the non-flat side walls of the trench being covered nonconformingly with the metal so that they do not form an electrical current path in a direction extending perpendicularly to the front side; and a closure, in particular a seal-glass closure, being embodied in the region of the trench between the base substrate and the cap substrate.
    Type: Application
    Filed: July 30, 2018
    Publication date: November 19, 2020
    Inventors: Johannes Baader, Nicolas Schorr, Rainer Straub, Stefan Pinter, Tina Steigert
  • Patent number: 10840107
    Abstract: A method for forming a cavity in a silicon substrate, a surface of the silicon substrate having a tilting angle relative to a first plane of the silicon substrate, and the first plane being a {111} plane of the silicon substrate, and situation of an etching mask on the surface of the silicon substrate. The etching mask has a retarding structure that protrudes into the mask opening, and a first etching projection region. All further edges of the mask opening outside the first etching projection region are situated essentially parallel to {111} planes of the silicon substrate. The method includes an anisotropic etching of the silicon substrate during a defined etching duration. An etching rate in the <111> directions of the silicon substrate is lower than in other spatial directions, and the first retarding structure is undercut in a first undercut direction going out from the first etching projection region.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: November 17, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Simon Armbruster, Benjamin Steuer, Stefan Pinter, Dietmar Haberer, Jochen Tomaschko
  • Patent number: 10775610
    Abstract: An actuator device and a method for tilting an actuator device. The method includes the steps: conducting electrical current through an electrical conduction device, which is guided via a tilting device of the actuator device, within a first magnetic field that is generated by a permanent magnet device of the actuator device, so that an actuator element of the tilting device is tilted along a first tilting axis as the result of a Lorentz force; and generating a second magnetic field by an electromagnet device of the actuator device in the area of the permanent magnet device, so that the tilting device is tilted along a second tilting axis as the result of magnetic attraction and repulsion.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: September 15, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Benjamin Steuer, Frederic Njikam Njimonzie, Joerg Muchow, Rainer Straub, Stefan Pinter
  • Publication number: 20200231433
    Abstract: A manufacturing method for a micromechanical window structure including the steps: providing a substrate, the substrate having a front side and a rear side; forming a first recess on the front side; forming a coating on the front side and on the first recess; and forming a second recess on the rear side, so that the coating is at least partially exposed, whereby a window is formed by the exposed area of the coatings.
    Type: Application
    Filed: February 13, 2020
    Publication date: July 23, 2020
    Inventors: Joerg Muchow, Rainer Straub, Stefan Pinter
  • Patent number: 10690906
    Abstract: A magnetic actuator includes: a plate having a main plane of extent and mounted rotatably about at least one first axis of rotation which is parallel to the main plane of extent, the plate having at least one conductor loop parallel to the main plane of extent; a magnetic bracket situated beneath the plate and having a U-shaped magnetic flux conducting rail and a hard magnet whose magnetization is perpendicular to the U-shaped opening, the magnetic bracket and the plate being aligned with one another in such a way that the opening in the magnetic bracket points toward the main plane of extent of the plate, the U-shaped magnetic flux conducting rail having a main direction of extent parallel to the first axis of rotation, and the plate being deflectable about the at least one axis of rotation by energizing the at least one conductor loop.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: June 23, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Stefan Pinter, Joerg Muchow, Frank Schatz
  • Publication number: 20200166743
    Abstract: A method for manufacturing a protective wafer including a frame wafer and an optical window, and to a method for manufacturing a micromechanical device including such a protective wafer having an inclined optical window. Also described are a protective wafer including a frame wafer and an optical window, and a micromechanical device including a MEMS wafer and such a protective wafer, which delimit a cavity, the protective wafer including an inclined optical window.
    Type: Application
    Filed: January 30, 2020
    Publication date: May 28, 2020
    Inventor: Stefan Pinter
  • Patent number: 10663624
    Abstract: A method for creating a nanostructure in a transparent substrate, including a) applying a first structure carrier layer having a defined thickness onto at least one surface of the substrate; b) forming a nanostructure in the first structure carrier layer; and c) oxidizing the first structure carrier layer.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: May 26, 2020
    Assignee: Robert Bosch GmbH
    Inventor: Stefan Pinter
  • Patent number: 10627617
    Abstract: A micromechanical constituent includes an actuator designed to impart to a displaceable element a first displacement motion around a first rotation axis and a second displacement motion around a second rotation axis oriented tiltedly with respect to the first rotation axis, the actuator including a permanent magnet on a first spring element and a one second permanent magnet on a second spring element, where the first permanent magnet is excitable to perform a first translational motion tiltedly with respect to the first rotation axis and tiltedly with respect to the second rotation axis, and the second permanent magnet is excitable to perform a second translational motion directed oppositely to the first translational motion, causing the second displacement motion of the displaceable element around the second rotation axis.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: April 21, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Frank Schatz, Joerg Muchow, Mirko Hattass, Stefan Pinter, Thorsten Balslink
  • Patent number: 10589988
    Abstract: A mechanical component has: a mounting; a movable part which, with the aid of at least one first spring and one second spring, is connected to the mounting in such a way that the movable part is movable about a rotational axis extending through a first anchoring area of the first spring on the mounting and a second anchoring area of the second spring on the mounting; a first sensor device with at least one first resistor which is situated on and/or in the first spring; and a second sensor device with at least one second resistor situated on and/or in the second spring. The first sensor device includes a first Wheatstone half bridge and the second sensor device includes a second Wheatstone half bridge. The first and second Wheatstone half bridges are connected to form a Wheatstone full bridge.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: March 17, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Wolfgang Heinzelmann, Mohamad Iyad Al Dibs, Rainer Straub, Stefan Pinter, Frederic Njikam Njimonzie, Joerg Muchow, Helmut Grutzeck, Simon Armbruster, Sebastian Reiss
  • Patent number: 10591721
    Abstract: A method for manufacturing a protective wafer including a frame wafer and an optical window, and to a method for manufacturing a micromechanical device including such a protective wafer having an inclined optical window. Also described are a protective wafer including a frame wafer and an optical window, and a micromechanical device including a MEMS wafer and such a protective wafer, which delimit a cavity, the protective wafer including an inclined optical window.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: March 17, 2020
    Assignee: Robert Bosch GmbH
    Inventor: Stefan Pinter
  • Publication number: 20200056972
    Abstract: A particle sensor that includes a first laser Doppler sensor and at least a second laser Doppler sensor, as well as a control unit that is configured to carry out self-interference measurements with the first laser Doppler sensor and simultaneously with at least the second laser Doppler sensor.
    Type: Application
    Filed: September 12, 2017
    Publication date: February 20, 2020
    Inventors: Balazs Jatekos, Dick Scholten, Ingo Ramsteiner, Robert Kakonyi, Stefan Pinter
  • Publication number: 20190359478
    Abstract: A micromechanical component having a mount, an adjustable element, which is connected via at least one spring to the mount, and an actuator device, a first oscillatory motion of the adjustable element about a first axis of rotation and simultaneously a second oscillatory motion of the adjustable element, which is set into the first oscillatory motion, being excitable about a second axis of rotation in response to the actuator device; and the adjustable element being configured by the at least one spring to be adjustable on the mount in such a way that the adjustable element is adjustable by a resulting angular momentum about a rotational axis, which is oriented orthogonally to the first axis of rotation and orthogonally to second axis of rotation. Also, a method for manufacturing a micromechanical component. Moreover, a method for exciting a motion of an adjustable element about a rotational axis.
    Type: Application
    Filed: November 16, 2017
    Publication date: November 28, 2019
    Inventors: Philip Kaupmann, Stefan Pinter, Helmut Grutzeck, Jochen Franz, Joerg Muchow
  • Publication number: 20190348300
    Abstract: A method for forming a cavity in a silicon substrate, a surface of the silicon substrate having a tilting angle relative to a first plane of the silicon substrate, and the first plane being a {111} plane of the silicon substrate, and situation of an etching mask on the surface of the silicon substrate. The etching mask has a retarding structure that protrudes into the mask opening, and a first etching projection region. All further edges of the mask opening outside the first etching projection region are situated essentially parallel to {111} planes of the silicon substrate. The method includes an anisotropic etching of the silicon substrate during a defined etching duration. An etching rate in the <111> directions of the silicon substrate is lower than in other spatial directions, and the first retarding structure is undercut in a first undercut direction going out from the first etching projection region.
    Type: Application
    Filed: July 23, 2019
    Publication date: November 14, 2019
    Inventors: Simon Armbruster, Benjamin Steuer, Stefan Pinter, Dietmar Haberer, Jochen Tomaschko
  • Patent number: 10431474
    Abstract: A method for forming a cavity in a silicon substrate, a surface of the silicon substrate having a tilting angle relative to a first plane of the silicon substrate, and the first plane being a {111} plane of the silicon substrate, and situation of an etching mask on the surface of the silicon substrate. The etching mask has a retarding structure that protrudes into the mask opening, and a first etching projection region. All further edges of the mask opening outside the first etching projection region are situated essentially parallel to {111} planes of the silicon substrate. The method includes an anisotropic etching of the silicon substrate during a defined etching duration. An etching rate in the <111> directions of the silicon substrate is lower than in other spatial directions, and the first retarding structure is undercut in a first undercut direction going out from the first etching projection region.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: October 1, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Simon Armbruster, Benjamin Steuer, Stefan Pinter, Dietmar Haberer, Jochen Tomaschko
  • Patent number: 10222609
    Abstract: A micromirror assembly is described as including a spring-mounted mirror and at least one stop unit, which is designed to restrict a movement of the mirror in the event of a movement of the mirror in a predefined direction out of its idle position. Furthermore, the invention relates to a projection device.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: March 5, 2019
    Assignee: ROBERT BOSCH GMBH
    Inventors: Rainer Straub, Stefan Pinter, Johannes Baader, Andreas Duell, Frederic Njikam Njimonzie, Joerg Muchow, Helmut Grutzeck, Stefan Mark
  • Publication number: 20180314056
    Abstract: A micromechanical constituent includes an actuator designed to impart to a displaceable element a first displacement motion around a first rotation axis and a second displacement motion around a second rotation axis oriented tiltedly with respect to the first rotation axis, the actuator including a permanent magnet on a first spring element and a one second permanent magnet on a second spring element, where the first permanent magnet is excitable to perform a first translational motion tiltedly with respect to the first rotation axis and tiltedly with respect to the second rotation axis, and the second permanent magnet is excitable to perform a second translational motion directed oppositely to the first translational motion, causing the second displacement motion of the displaceable element around the second rotation axis.
    Type: Application
    Filed: October 19, 2016
    Publication date: November 1, 2018
    Applicants: Robert Bosch GmbH, Robert Bosch GmbH
    Inventors: Frank Schatz, Joerg Muchow, Mirko Hattass, Stefan Pinter, Thorsten Balslink
  • Publication number: 20180257932
    Abstract: A method for manufacturing a micromechanical device includes providing a silicon substrate having a front side and a rear side, where a first normal of the front side deviates by a first angle from the <111> direction of the silicon substrate; forming in the front side first and second trenches that are spaced apart from and essentially parallel to each other, with the first and second trenches extending along a direction of the deviation; forming on the front side a first etching mask that covers the front side except for a first opening area between the first and second trenches; and anisotropically etching the front side using the etching mask, thereby forming in the opening area an oblique surface having a second angle to the first normal, which approximately corresponds to the first angle.
    Type: Application
    Filed: March 7, 2018
    Publication date: September 13, 2018
    Inventors: Benjamin Steuer, Christoph Schelling, Daniel Pantel, Stefan Pinter
  • Publication number: 20180252912
    Abstract: An actuator device and a method for tilting an actuator device. The method includes the steps: conducting electrical current through an electrical conduction device, which is guided via a tilting device of the actuator device, within a first magnetic field that is generated by a permanent magnet device of the actuator device, so that an actuator element of the tilting device is tilted along a first tilting axis as the result of a Lorentz force; and generating a second magnetic field by an electromagnet device of the actuator device in the area of the permanent magnet device, so that the tilting device is tilted along a second tilting axis as the result of magnetic attraction and repulsion.
    Type: Application
    Filed: July 18, 2016
    Publication date: September 6, 2018
    Inventors: Benjamin Steuer, Frederic Njikam Njimonzie, Joerg Muchow, Rainer Straub, Stefan Pinter
  • Publication number: 20180194616
    Abstract: A manufacturing method for a micromechanical window structure including the steps: providing a substrate, the substrate having a front side and a rear side; forming a first recess on the front side; forming a coating on the front side and on the first recess; and forming a second recess on the rear side, so that the coating is at least partially exposed, whereby a window is formed by the exposed area of the coatings.
    Type: Application
    Filed: May 24, 2016
    Publication date: July 12, 2018
    Inventors: Joerg Muchow, Rainer Straub, Stefan Pinter
  • Patent number: 10012828
    Abstract: An assembly body for micromirror chips that partly encloses an internal cavity, the assembly body including at two sides oriented away from one another, at least one respective partial outer wall that is fashioned transparent for a specified spectrum, and the assembly body having at least one first outer opening on which a first micromirror chip can be attached, and a second outer opening on which a second micromirror chip can be attached, in such a way that a light beam passing through the first partial outer wall is capable of being deflected by the first micromirror chip onto the second micromirror chip, and is capable of being deflected by the second micromirror chip through the second partial outer wall. A mirror device and a production method for a mirror device are also described.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: July 3, 2018
    Assignee: Robert Bosch GmbH
    Inventors: Frank Schatz, Friedjof Heuck, Kerrin Doessel, Stefan Pinter, Daniel Pantel, Franziska Rohlfing