Patents by Inventor Stephan Grunow

Stephan Grunow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7781884
    Abstract: The density of components in integrated circuits (ICs) is increasing with time. The density of heat generated by the components is similarly increasing. Maintaining the temperature of the components at reliable operating levels requires increased thermal transfer rates from the components to the IC package exterior. Dielectric materials used in interconnect regions have lower thermal conductivity than silicon dioxide. This invention comprises a heat pipe located in the interconnect region of an IC to transfer heat generated by components in the IC substrate to metal plugs located on the top surface of the IC, where the heat is easily conducted to the exterior of the IC package. Refinements such as a wicking liner or reticulated inner surface will increase the thermal transfer efficiency of the heat pipe. Strengthening elements in the interior of the heat pipe will provide robustness to mechanical stress during IC manufacture.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: August 24, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer Kumar Ajmera, Phillip D. Matz, Stephan Grunow, Satyavolu Srinivas Papa Rao
  • Publication number: 20100210098
    Abstract: A method of forming contacts for semiconductor devices, the method including depositing an inter-level dielectric (ILD) over a plurality of gate stacks, in which the divots within the inter-level dielectric layer are defined by the spaces between the gate stacks, filling the divots with an initial fill material, depositing a masking material on the dielectric over the gate stacks, and selectively etching the fill material to form contact vias. The fill material may be a self-assembly material such as a multi-block copolymer in which the blocks self organize vertically within the divots, so that a selective etch of the block material will remove the vertically organized blocks from the divot, but leave at least one block over the gate regions. In another embodiment, the fill material may be a metal, and the masking material may be a parylene based polymer.
    Type: Application
    Filed: February 17, 2009
    Publication date: August 19, 2010
    Applicant: International Business Machines Corporation
    Inventors: Johnathan E. Faltermeier, Stephan Grunow, Kangguo Cheng, Kevin Petrarca, Kaushik Kumar, Lawrence A. Clevenger, Shom Ponoth, Vidhya Ramachandran
  • Patent number: 7776737
    Abstract: An integrated circuit which includes a semiconductor substrate, a first metal wiring level on the semiconductor substrate which includes metal wiring lines, an interconnect wiring level on the first metal wiring level which includes a via interconnect within an interlevel dielectric, a second metal wiring level on the interconnect wiring level which includes metal wiring lines, at least one metal wiring line having a plurality of dielectric fill shapes that reduces the cross sectional area of the at least one metal wiring line, and wherein the via interconnect makes electrical contact between a metal line in the first wiring level and the at least one metal wiring line in the second wiring level, the via interconnect being adjacent to and spaced from the plurality of dielectric fill shapes. Also disclosed is a method in which a plurality of dielectric fill shapes are placed adjacent to and spaced from a via contact area in a wiring line in a second wiring level.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: August 17, 2010
    Assignee: International Business Machines Corporation
    Inventors: Griselda Bonilla, Kaushik Chanda, Ronald G. Filippi, Stephan Grunow, Sujatha Sankaran, Andrew H. Simon, Theodorus Eduardus Standaert
  • Patent number: 7737528
    Abstract: A fuse structure for an integrated circuit device includes an elongated metal interconnect layer defined within an insulating layer; a metal cap layer formed on only a portion of a top surface of the metal interconnect layer; and a dielectric cap layer formed on both the metal cap layer and the remaining portions of the metal interconnect layer not having the metal cap layer formed thereon; wherein the remaining portions of the metal interconnect layer not having the metal cap layer formed thereon are susceptible to an electromigration failure mechanism so as to facilitate programming of the fuse structure by application of electric current through the elongated metal interconnect layer.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: June 15, 2010
    Assignee: International Business Machines Corporation
    Inventors: Griselda Bonilla, Kaushik Chanda, Ronald G. Filippi, Jeffrey P. Gambino, Stephan Grunow, Chao-Kun Hu, Sujatha Sankaran, Andrew H. Simon, Theodorus E. Standaert
  • Patent number: 7674707
    Abstract: Devices and methods are presented to fabricate diffusion barrier layers on a substrate. Presently, barrier layers comprising a nitride layer and a pure metal layer are formed using a physical vapor deposition (PVD) process that requires multiple ignition steps, and results in nitride-layer thicknesses of no less than 2 nm. This invention discloses devices and process to produce nitride-layers of less than <1 nm, while allowing for formation of a pure metal layer on the nitride-layer without re-igniting the plasma. To achieve this, the flow of nitrogen gas is cut off either before the plasma is ignited, or before the formation of a continuous-flow plasma. This ensures that a limited number of nitrogen atoms is deposited in conjunction with metal atoms on the substrate, thereby allowing for controlled thickness of the nitride layer.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: March 9, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Noel M. Russell, Satyavolu Srinivas Papa Rao, Stephan Grunow
  • Patent number: 7671362
    Abstract: A test structure for integrated circuit (IC) device fabrication includes a plurality of test structure chains formed at various regions of an IC wafer, each of the plurality of test structure chains including one or more vias; each of the one or more vias in contact with a conductive line disposed thereabove, the conductive line being configured such that at least one dimension thereof varies from chain to chain so as to produce variations in seed layer and liner layer thickness from chain to chain for the same deposition process conditions.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: March 2, 2010
    Assignees: International Business Machines Corporation, Advanced Micro Devices, Inc. (AMD)
    Inventors: Tibor Bolom, Kaushik Chanda, Ronald G. Filippi, Stephan Grunow, Paul S. McLaughlin, Sujatha Sankaran, Andrew H. Simon, Theodorus E. Standaert, James Werking
  • Publication number: 20100038790
    Abstract: An integrated circuit which includes a semiconductor substrate, a first metal wiring level on the semiconductor substrate which includes metal wiring lines, an interconnect wiring level on the first metal wiring level which includes a via interconnect within an interlevel dielectric, a second metal wiring level on the interconnect wiring level which includes metal wiring lines, at least one metal wiring line having a plurality of dielectric fill shapes that reduces the cross sectional area of the at least one metal wiring line, and wherein the via interconnect makes electrical contact between a metal line in the first wiring level and the at least one metal wiring line in the second wiring level, the via interconnect being adjacent to and spaced from the plurality of dielectric fill shapes. Also disclosed is a method in which a plurality of dielectric fill shapes are placed adjacent to and spaced from a via contact area in a wiring line in a second wiring level.
    Type: Application
    Filed: August 14, 2008
    Publication date: February 18, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Griselda Bonilla, Kaushik Chanda, Ronald G. Filippi, Stephan Grunow, Sujatha Sankaran, Andrew H. Simon, Theodorus Eduardus Standaert
  • Publication number: 20100038793
    Abstract: Interconnect structures comprising capping layers with low dielectric constants and good oxygen barrier properties and methods of making the same are provided. In one embodiment, the integrated circuit structure comprises: an interlevel dielectric layer disposed above a semiconductor substrate; a conductive interconnect embedded in the interlevel dielectric layer; a first capping layer comprising SiwCxNyHz disposed upon the conductive interconnect; a second capping layer comprising SiaCbNcHd (has less N) having a dielectric constant less than about 4 disposed upon the first capping layer; and a third capping layer comprising SiwCxNyHz disposed upon the second capping layer, wherein a+b+c+d=1.0 and a, b, c, and d are each greater than 0 and less than 1, and wherein w+x+y+z=1.0 and w, x, y, and z are each greater than 0 and less than 1.
    Type: Application
    Filed: August 12, 2008
    Publication date: February 18, 2010
    Applicants: International Business Machines Corporation, Samsung Electronics Co., LTD, Chartered Semiconductor Manufacturing LTD.
    Inventors: Griselda Bonilla, Tien Cheng, Lawrence A. Clevenger, Stephan Grunow, Chao-Kun Hu, Roger A. Quon, Zhiguo Sun, Wei-tsui Tseng, Yiheng Xu, Yun Wang, Hyeok-Sang Oh
  • Patent number: 7642619
    Abstract: A semiconductor device, such as an inductor, is formed with an air gap. A first level has an intra-metal dielectric layer including one or more inductor loops, one or more vias, and one or more copper bulkhead structures. An inter-level dielectric layer is formed over the first level. An extraction via is formed through the intra-metal dielectric layer and inter-level dielectric layer. An air gap is formed between inductor loops by removing portions of the intra-metal dielectric layer coupled to the extraction via using a supercritical fluid process, and forming a non-conformal layer to seal the extraction via. The air gap may be filled with an inert gas, like argon or nitrogen.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: January 5, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Phillip D. Matz, Stephan Grunow, Satyavolu Srinivas Papa Rao
  • Patent number: 7629264
    Abstract: The present invention in one embodiment provides a method of forming an interconnect comprising, providing a interlevel dielectric layer atop a substrate, the interlevel dielectric layer including at least one tungsten (W) stud extending from an upper surface of the interlevel dielectric to the substrate; recessing an upper surface of the at least one tungsten (W) stud below the upper surface of the interlevel dielectric to provide at least one recessed tungsten (W) stud; forming a first low-k dielectric layer atop the upper surface of the interlevel dielectric layer and the at least one recessed tungsten (W) stud; forming a opening through the first low-k dielectric layer to expose an upper surface of the at least one recessed tungsten stud; and filling the opening with copper (Cu).
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: December 8, 2009
    Assignee: International Business Machines Corporation
    Inventors: Griselda Bonilla, Kaushik A. Kumar, Lawrence A. Clevenger, Stephan Grunow, Kevin S. Petrarca, Roger A. Quon
  • Publication number: 20090294973
    Abstract: An interconnect structure for an integrated circuit (IC) device includes an elongated, electrically conductive line comprising one or more segments formed at a first width, w1, and one or more segments formed at one or more additional widths, w2 . . . wN, with the first width being narrower than each of the one or more additional widths; wherein the relationship of the total length, L1, of the one or more conductive segments formed at the first width to the total lengths, L2 . . . LN, of the one or more conductive segments formed at the one or more additional widths is selected such that, for a given magnitude of current carried by the conductive line, a critical length with respect to an electromigration short-length effect benefit is maintained such that a total length of the conductive line, L=L1+L2+ . . . +LN, meets a minimum desired design length regardless of the critical length.
    Type: Application
    Filed: May 29, 2008
    Publication date: December 3, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kaushik Chanda, Ronald G. Filippi, Stephan Grunow, Chao-Kun Hu, Sujatha Sankaran, Andrew H. Simon, Theodorus E. Standaert
  • Publication number: 20090294901
    Abstract: A fuse structure for an integrated circuit device includes an elongated metal interconnect layer defined within an insulating layer; a metal cap layer formed on only a portion of a top surface of the metal interconnect layer; and a dielectric cap layer formed on both the metal cap layer and the remaining portions of the metal interconnect layer not having the metal cap layer formed thereon; wherein the remaining portions of the metal interconnect layer not having the metal cap layer formed thereon are susceptible to an electromigration failure mechanism so as to facilitate programming of the fuse structure by application of electric current through the elongated metal interconnect layer.
    Type: Application
    Filed: June 3, 2008
    Publication date: December 3, 2009
    Applicant: International Business Machines Corporation
    Inventors: Griselda Bonilla, Kaushik Chanda, Ronald G. Filippi, Jeffrey P. Gambino, Stephan Grunow, Chao-Kun Hu, Sujatha Sankaran, Andrew H. Simon, Theodorus E. Standaert
  • Publication number: 20090261453
    Abstract: A semiconductor device, such as an inductor, is formed with an air gap. A first level has an intra-metal dielectric layer including one or more inductor loops, one or more vias, and one or more copper bulkhead structures. An inter-level dielectric layer is formed over the first level. An extraction via is formed through the intra-metal dielectric layer and inter-level dielectric layer. An air gap is formed between inductor loops by removing portions of the intra-metal dielectric layer coupled to the extraction via using a supercritical fluid process, and forming a non-conformal layer to seal the extraction via. The air gap may be filled with an inert gas, like argon or nitrogen.
    Type: Application
    Filed: June 23, 2009
    Publication date: October 22, 2009
    Applicant: Texas Instruments Incorporated
    Inventors: Phillip D. Matz, Stephan Grunow, Satyavolu Srinivas Papa Rao
  • Publication number: 20090256263
    Abstract: The present invention in one embodiment provides a method of forming an interconnect comprising, providing a interlevel dielectric layer atop a substrate, the interlevel dielectric layer including at least one tungsten (W) stud extending from an upper surface of the interlevel dielectric to the substrate; recessing an upper surface of the at least one tungsten (W) stud below the upper surface of the interlevel dielectric to provide at least one recessed tungsten (W) stud; forming a first low-k dielectric layer atop the upper surface of the interlevel dielectric layer and the at least one recessed tungsten (W) stud; forming a opening through the first low-k dielectric layer to expose an upper surface of the at least one recessed tungsten stud; and filling the opening with copper (Cu).
    Type: Application
    Filed: April 9, 2008
    Publication date: October 15, 2009
    Applicant: International Business Machines Corporation
    Inventors: Griselda Bonilla, Kaushik A. Kumar, Lawrence A. Clevenger, Stephan Grunow, Kevin S. Petrarca, Roger A. Quon
  • Patent number: 7566627
    Abstract: In accordance with the invention, there are inductors with an air gap, semiconductor devices, integrated circuits, and methods of fabricating them. The method of making an inductor with an air gap can include fabricating a first level of inductor in an intra-metal dielectric layer including one or more inductor loops, one or more vias, and one or more copper bulkhead structures, forming an inter-level dielectric layer over the first level and repeating the steps to form two or more levels of inductor. The method can also include forming an extraction via, forming an air gap between the inductor loops by removing portions of the intra-metal dielectric layer coupled to the extraction via using super critical fluid process, and forming a non-conformal layer to seal the extraction via.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: July 28, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Phillip D Matz, Stephan Grunow, Satyavolu Srinivas Papa Rao
  • Publication number: 20090166865
    Abstract: Devices and methods are presented to fabricate diffusion barrier layers on a substrate. Presently, barrier layers comprising a nitride layer and a pure metal layer are formed using a physical vapor deposition (PVD) process that requires multiple ignition steps, and results in nitride-layer thicknesses of no less than 2 nm. This invention discloses devices and process to produce nitride-layers of less than <1 nm, while allowing for formation of a pure metal layer on the nitride-layer without re-igniting the plasma. To achieve this, the flow of nitrogen gas is cut off either before the plasma is ignited, or before the formation of a continuous-flow plasma. This ensures that a limited number of nitrogen atoms is deposited in conjunction with metal atoms on the substrate, thereby allowing for controlled thickness of the nitride layer.
    Type: Application
    Filed: December 31, 2007
    Publication date: July 2, 2009
    Inventors: Noel M. RUSSELL, Satyavolu Srinivas Papa Rao, Stephan Grunow
  • Publication number: 20090151981
    Abstract: A microelectronic structure and a method for fabricating the microelectronic structure use a dielectric layer that is located and formed upon a first conductor layer. An aperture is located through the dielectric layer. The aperture penetrates vertically into the first conductor layer and extends laterally within the first conductor layer beneath the dielectric layer while not reaching the dielectric layer, to form an extended and winged aperture.
    Type: Application
    Filed: August 13, 2008
    Publication date: June 18, 2009
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, ADVANCED MICRO DEVICES INC. ("AMD")
    Inventors: Tibor Bolom, Stephan Grunow, David L. Rath, Andrew Herbert Simon
  • Publication number: 20090146143
    Abstract: A test structure for integrated circuit (IC) device fabrication includes a plurality of test structure chains formed at various regions of an IC wafer, each of the plurality of test structure chains including one or more vias; each of the one or more vias in contact with a conductive line disposed thereabove, the conductive line being configured such that at least one dimension thereof varies from chain to chain so as to produce variations in seed layer and liner layer thickness from chain to chain for the same deposition process conditions.
    Type: Application
    Filed: December 10, 2007
    Publication date: June 11, 2009
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, ADVANCED MICRO DEVICES, INC. (AMD)
    Inventors: Tibor Bolom, Kaushik Chanda, Ronald G. Filippi, Stephan Grunow, Paul S. McLaughlin, Sujatha Sankaran, Andrew H. Simon, Theodorus E. Standaert, James Werking
  • Publication number: 20090098728
    Abstract: The disclosed method forms a via between metallization layers in a semiconductor structure by patterning an insulator layer overlying a first metallization layer to include a via opening. The method lines the via opening with TaN and Ta liners and then sputter etches the via opening deeper through the TaN and Ta liners into the first metallization layer. After sputter etching, the method then lines the via opening with second TaN and Ta liners. Next, the method deposits a conductor into the via opening, thereby connecting the first and second metallization layers.
    Type: Application
    Filed: October 11, 2007
    Publication date: April 16, 2009
    Inventors: Stephan Grunow, Thomas McCarroll Shaw, Andrew H. Simon, Chih-Chao Yang, Tiblor Bolom, James Werking
  • Patent number: 7517736
    Abstract: Methods are provided that enable the ability to use a less aggressive liner processes, while producing structures known to give a desired high stress migration and electro-migration reliability. The present invention circumvents the issue of sputter damage of low k (on the order of 3.2 or less) dielectric by creating the via “anchors” (interlocked and interpenetrated vias) through chemical means. This allows the elimination or significant reduction of the sputter-etching process used to create the via penetration (“drilling, gouging”) into the line below in the barrier/seed metallization step. The present invention achieves the above, while maintaining a reliable copper fill and device structure.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: April 14, 2009
    Assignee: International Business Machines Corporation
    Inventors: Sanjay C. Mehta, Daniel C. Edelstein, John A. Fitzsimmons, Stephan Grunow, Henry A. Nye, III, David L. Rath