Patents by Inventor Stephan Kronholz

Stephan Kronholz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8939765
    Abstract: In sophisticated semiconductor devices, the defect rate that may typically be associated with the provision of a silicon/germanium material in the active region of P-channel transistors may be significantly decreased by incorporating a carbon species prior to or during the selective epitaxial growth of the silicon/germanium material. In some embodiments, the carbon species may be incorporated during the selective growth process, while in other cases an ion implantation process may be used. In this case, superior strain conditions may also be obtained in N-channel transistors.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: January 27, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stephan Kronholz, Peter Javorka, Maciej Wiatr, Roman Boschke, Christian Krueger
  • Publication number: 20140339604
    Abstract: A semiconductor device includes a gate electrode structure of a transistor, the gate electrode structure being positioned above a semiconductor region and having a gate insulation layer that includes a high-k dielectric material, a metal-containing cap material positioned above the gate insulation layer, and a gate electrode material positioned above the metal-containing cap material. A bottom portion of the gate electrode structure has a first length and an upper portion of the gate electrode structure has a second length that is different than the first length, wherein the first length is approximately 50 nm or less. A strain-inducing semiconductor alloy is embedded in the semiconductor region laterally adjacent to the bottom portion of the gate electrode structure, and drain and source regions are at least partially positioned in the strain-inducing semiconductor alloy.
    Type: Application
    Filed: July 31, 2014
    Publication date: November 20, 2014
    Inventors: Stephan Kronholz, Markus Lenski, Vassilios Papageorgiou
  • Patent number: 8884379
    Abstract: An efficient strain-inducing mechanism may be provided on the basis of a piezoelectric material so that performance of different transistor types may be enhanced by applying a single concept. For example, a piezoelectric material may be provided below the active region of different transistor types and may be appropriately connected to a voltage source so as to obtain a desired type of strain.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: November 11, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stephan Kronholz, Maciej Wiatr
  • Patent number: 8847404
    Abstract: In a stacked chip configuration, the “inter chip” connection is established on the basis of functional molecules, thereby providing a fast and space-efficient communication between the different semiconductor chips.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: September 30, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stephan Kronholz, Markus Lenski, Ralf Richter
  • Patent number: 8835209
    Abstract: When forming sophisticated semiconductor devices including complementary transistors having a reduced gate length, the individual transistor characteristics may be adjusted on the basis of individually provided semiconductor alloys, such as a silicon/germanium alloy for P-channel transistors and a silicon/phosphorous semiconductor alloy for N-channel transistors. To this end, a superior hard mask patterning regime may be applied in order to provide compatibility with sophisticated replacement gate approaches, while avoiding undue process non-uniformities, in particular with respect to the removal of a dielectric cap layer.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: September 16, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stephan Kronholz, Gunda Beernink, Markus Lenski
  • Patent number: 8828816
    Abstract: Disclosed herein is a method of forming a semiconductor device. In one example, the method comprises forming a P-active region in a silicon containing semiconducting substrate, performing an ion implantation process to implant germanium into the P-active region to form an implanted silicon-germanium region in the P-active region, and forming a gate electrode structure for a PMOS transistor above the implanted silicon-germanium region.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: September 9, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Peter Javorka, Stephan Kronholz
  • Publication number: 20140217480
    Abstract: Disclosed herein are various methods of forming a silicon/germanium protection layer above source/drain regions of a transistor. One method disclosed herein includes forming a plurality of recesses in a substrate proximate the gate structure, forming a semiconductor material in the recesses, forming at least one layer of silicon above the semiconductor material, and forming a cap layer comprised of silicon germanium on the layer of silicon. One device disclosed herein includes a gate structure positioned above a substrate, a plurality of recesses formed in the substrate proximate the gate structure, at least one layer of semiconductor material positioned at least partially in the recesses, a layer of silicon positioned above the at least one layer of semiconductor material, and a cap layer comprised of silicon/germanium positioned on the layer of silicon.
    Type: Application
    Filed: February 1, 2013
    Publication date: August 7, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Stephan Kronholz, Joachim Patzer
  • Patent number: 8796080
    Abstract: Disclosed herein are various methods of epitaxially forming materials on transistor devices. In one example, the method includes forming an isolation region in a semiconducting substrate that defines an active area, performing a heating process on the active area to cause an upper surface of the active area to become a curved surface and performing an etching process on the active area to define a recess having a curved bottom surface. The method further includes the steps of forming a channel semiconductor material in the recess with a curved upper surface and forming a gate structure for a transistor above the curved upper surface of the channel semiconductor material.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: August 5, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stephan Kronholz, Hans-Juergen Thees, Peter Javorka
  • Publication number: 20140191332
    Abstract: Disclosed herein is a device that includes a first PFET transistor formed in and above a first active region of a semiconducting substrate, a second PFET transistor formed in and above a second active region of the semiconducting substrate, wherein at least one of a thickness of the first and second channel semiconductor materials or a concentration of germanium in the first and second channel semiconductor materials are different.
    Type: Application
    Filed: March 13, 2014
    Publication date: July 10, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Hans-Juergen Thees, Stephan Kronholz, Peter Javorka
  • Patent number: 8772843
    Abstract: A silicon dioxide material may be provided in sophisticated semiconductor devices in the form of a double liner including an undoped silicon dioxide material in combination with a high density plasma silicon dioxide, thereby providing reduced dependency on pattern density. In some illustrative embodiments, the silicon dioxide double liner may be used as a spacer material and as a hard mask material in process strategies for incorporating a strain-inducing semiconductor material.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: July 8, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stephan Kronholz, Markus Lenski, Kerstin Ruttloff, Volker Jaschke
  • Patent number: 8765559
    Abstract: When forming sophisticated gate electrode structures, such as high-k metal gate electrode structures, an appropriate encapsulation may be achieved, while also undue material loss of a strain-inducing semiconductor material that is provided in one type of transistor may be avoided. To this end, the patterning of the protective spacer structure prior to depositing the strain-inducing semiconductor material may be achieved for each type of transistor on the basis of the same process flow, while, after the deposition of the strain-inducing semiconductor material, an etch stop layer may be provided so as to preserve integrity of the active regions.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: July 1, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stephan Kronholz, Gunda Beernink, Markus Lenski, Frank Seliger, Frank Richter
  • Patent number: 8765542
    Abstract: One method disclosed includes forming a gate structure of a transistor above a surface of a semiconducting substrate, forming a sidewall spacer proximate the gate structure, forming a sacrificial layer of material above the protective cap layer, sidewall spacer and substrate, forming an OPL layer above the sacrificial layer, reducing a thickness of the OPL layer such that, after the reduction, an upper surface of the OPL layer is positioned at a level that is below a level of an upper surface of the protective cap layer, performing a first etching process to remove the sacrificial layer from above the protective cap layer to expose the protective cap layer for further processing, performing a second etching process to remove the protective cap layer and performing at least one process operation to remove at least one of the OPL layer or the sacrificial layer from above the surface of the substrate.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: July 1, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Joachim Patzer, Frank Seliger, Markus Lenski, Stephan Kronholz
  • Patent number: 8748275
    Abstract: In sophisticated semiconductor devices, a semiconductor alloy, such as a threshold adjusting semiconductor material in the form of silicon/germanium, may be provided in an early manufacturing stage selectively in certain active regions, wherein a pronounced degree of recessing and material loss, in particular in isolation regions, may be avoided by providing a protective material layer selectively above the isolation regions. For example, in some illustrative embodiments, a silicon material may be selectively deposited on the isolation regions.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: June 10, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Hans-Juergen Thees, Stephan Kronholz, Maciej Wiatr
  • Patent number: 8735303
    Abstract: One illustrative method disclosed herein includes forming a first recess in a first active region of a substrate, forming a first layer of channel semiconductor material for a first PFET transistor in the first recess, performing a first thermal oxidation process to form a first protective layer on the first layer of channel semiconductor material, forming a second recess in the second active region of the semiconducting substrate, forming a second layer of channel semiconductor material for the second PFET transistor in the second recess and performing a second thermal oxidation process to form a second protective layer on the second layer of channel semiconductor material.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: May 27, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Hans-Juergen Thees, Stephan Kronholz, Peter Javorka
  • Patent number: 8735253
    Abstract: The concentration of a non-silicon species in a semiconductor alloy, such as a silicon/germanium alloy, may be increased after a selective epitaxial growth process by oxidizing a portion of the semiconductor alloy and removing the oxidized portion. During the oxidation, preferably the silicon species may react to form a silicon dioxide material while the germanium species may be driven into the remaining semiconductor alloy, thereby increasing the concentration thereof. Consequently, the threshold adjustment of sophisticated transistors may be accomplished with enhanced process uniformity on the basis of a given parameter setting for the epitaxial growth process while nevertheless providing a high degree of flexibility in adjusting the composition of the threshold adjusting material.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: May 27, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stephan Kronholz, Vassilios Papageorgiou, Martin Trentzsch
  • Patent number: 8728896
    Abstract: When forming sophisticated transistors requiring an embedded semiconductor alloy, the cavities may be formed with superior uniformity on the basis of, for instance, crystallographically anisotropic etch steps by providing a uniform oxide layer in order to reduce process related fluctuations or queue time variations. The uniform oxide layer may be formed on the basis of an APC control regime.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: May 20, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stephan Kronholz, Andreas Ott, Ina Ostermay
  • Publication number: 20140131805
    Abstract: A semiconductor device includes a first transistor positioned in and above a first semiconductor region, the first semiconductor region having a first upper surface and including a first semiconductor material. The semiconductor device further includes first raised drain and source portions positioned on the first upper surface of the first semiconductor region, the first drain and source portions including a second semiconductor material having a different material composition from the first semiconductor material. Additionally, the semiconductor device includes a second transistor positioned in and above a second semiconductor region, the second semiconductor region including the first semiconductor material. Finally, the semiconductor device also includes strain-inducing regions embedded in the second semiconductor region, the embedded strain-inducing regions including the second semiconductor material.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 15, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Stephan Kronholz, Peter Javorka, Roman Boschke
  • Patent number: 8722479
    Abstract: Generally, the present disclosure is directed to a method of at least reducing unwanted erosion of isolation structures of a semiconductor device during fabrication. One illustrative method disclosed includes forming an isolation structure in a semiconducting substrate and forming a conductive protection ring above plurality isolation structure.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: May 13, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Hans-Juergen Thees, Stephan Kronholz, Joerg Radecker
  • Patent number: 8722486
    Abstract: When forming sophisticated gate electrode structures requiring a threshold adjusting semiconductor alloy for one type of transistor, a recess is formed in the corresponding active region, thereby providing superior process uniformity during the deposition of the semiconductor material. Moreover, the well dopant species is implanted after the recessing, thereby avoiding undue dopant loss. Due to the recess, any exposed sidewall surface areas of the active region may be avoided during the selective epitaxial growth process, thereby significantly contributing to enhanced threshold stability of the resulting transistor including the high-k metal gate stack.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: May 13, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stephan Kronholz, Maciej Wiatr, Roman Boschke, Peter Javorka
  • Patent number: 8703551
    Abstract: Disclosed herein is a method of forming a semiconductor device. In one example, the method comprises performing at least one etching process to reduce a thickness of a P-active region of a semiconducting substrate to thereby define a recessed P-active region, performing a process in a process chamber to selectively form an as-deposited layer of a semiconductor material on the recessed P-active region, wherein the step of performing the at least one etching process is performed outside of the process chamber, and performing an etching process in the process chamber to reduce a thickness of the as-deposited layer of semiconductor material.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: April 22, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stephan Kronholz, Andreas Ott