Patents by Inventor Stephan Lutgen

Stephan Lutgen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11018280
    Abstract: Disclosed herein are systems and methods for reducing surface recombination losses in micro-LEDs. In some embodiments, a method includes increasing a bandgap in an outer region of a semiconductor layer by implanting ions in the outer region of the semiconductor layer and subsequently annealing the outer region of the semiconductor layer to intermix the ions with atoms within the outer region of the semiconductor layer. The semiconductor layer includes an active light emitting layer. A light outcoupling surface of the semiconductor layer has a diameter of less than 10 ?m. The outer region of the semiconductor layer extends from an outer surface of the semiconductor layer to a central region of the semiconductor layer that is shaded by a mask during the implanting of the ions.
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: May 25, 2021
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Thomas Lauermann, Stephan Lutgen, David Hwang
  • Publication number: 20210111319
    Abstract: Techniques disclosed herein relate to micro light emitting diodes (micro-LEDs) for a display system. A display system includes an array of micro light emitting diodes (micro-LEDs), an array of output couplers optically coupled to the array of micro-LEDs and configured to extract light emitted by respective micro-LEDs in the array of micro-LEDs, a waveguide display, and display optics configured to couple the light emitted by the array of micro-LEDs and extracted by the array of output couplers into the waveguide display. Each output coupler in the array of output couplers is configured to direct a chief ray of the light emitted by a respective micro-LED in the array of micro-LEDs to a different respective direction.
    Type: Application
    Filed: April 3, 2020
    Publication date: April 15, 2021
    Inventors: Stephan Lutgen, François Gérard Franck Olivier, Vasily Zabelin, William Padraic Henry, Markus Broell, Thomas Lauermann, David Massoubre, Daniel Bryce Thompson, Michael Grundmann
  • Patent number: 10964844
    Abstract: Disclosed herein are light emitting diodes (LEDs) having a high efficiency. A light emitting diode including an active light emitting layer within a semiconductor layer is provided. The semiconductor layer has a mesa shape. The light emitting diode also includes a substrate having a first surface on which the semiconductor layer is positioned and an outcoupling surface opposite to the first surface. Light generated by the active light emitting layer is incident on the outcoupling surface and propagates toward an optical element downstream of the outcoupling surface. The light emitting diode also includes a first anti-reflection coating adjacent to the outcoupling surface; an index-matched material between the outcoupling surface and the optical element, wherein an index of refraction of the index-matched material is greater than or equal to an index of refraction of the optical element; and/or secondary optics adjacent to the outcoupling surface.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: March 30, 2021
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventor: Stephan Lutgen
  • Patent number: 10942378
    Abstract: A pupil-replicating waveguide suitable for operation with a coherent light source is disclosed. A waveguide body has opposed surfaces for guiding a beam of image light. An out-coupling element is disposed in an optical path of the beam for out-coupling portions of the beam at a plurality of spaced apart locations along the optical path. Electrodes are coupled to at least a portion of the waveguide body for modulating an optical path length of the optical path of the beam to create time-varying phase delays between the portions of the beam out-coupled by the out-coupling element.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: March 9, 2021
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Andrew Maimone, Andrew Ouderkirk, Hee Yoon Lee, Ningfeng Huang, Maxwell Parsons, Scott Charles McEldowney, Babak Amirsolaimani, Pasi Saarikko, Wanli Chi, Giuseppe Calafiore, Alexander Koshelev, Barry David Silverstein, Lu Lu, Wai Sze Tiffany Lam, Gang Li, Stephan Lutgen, Francois Olivier, David Massoubre
  • Publication number: 20210036184
    Abstract: A emitting diode (LED) includes an epitaxial structure defining a base and a mesa on the base. The base defines a light emitting surface of the LED and includes current spreading layer. The mesa includes a thick confinement layer, a light generation area on the thick confinement layer to emit light, a thin confinement layer on the light generation area, and a contact layer on the thin confinement layer, the contact layer defining a top of the mesa. A reflective contact is on the contact layer to reflect a portion of the light emitted from the light generation area, the reflected light being collimated at the mesa and directed through the base to the light emitting surface. In some embodiments, the epitaxial structure grown on a non-transparent substrate. The substrate is removed, or used to form an extended reflector to collimate light.
    Type: Application
    Filed: October 20, 2020
    Publication date: February 4, 2021
    Inventors: Stephan Lutgen, David Massoubre
  • Patent number: 10847675
    Abstract: A emitting diode (LED) includes an epitaxial structure defining a base and a mesa on the base. The base defines a light emitting surface of the LED and includes current spreading layer. The mesa includes a thick confinement layer, a light generation area on the thick confinement layer to emit light, a thin confinement layer on the light generation area, and a contact layer on the thin confinement layer, the contact layer defining a top of the mesa. A reflective contact is on the contact layer to reflect a portion of the light emitted from the light generation area, the reflected light being collimated at the mesa and directed through the base to the light emitting surface. In some embodiments, the epitaxial structure grown on a non-transparent substrate. The substrate is removed, or used to form an extended reflector to collimate light.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: November 24, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: Stephan Lutgen, David Massoubre
  • Publication number: 20200357968
    Abstract: Disclosed herein are techniques for bonding components of LEDs. According to certain embodiments, a method includes performing p-side processing of a first component. The p-side processing is performed from a direction adjacent to a surface of a p-side semiconductor layer of the first component that is opposite to an active light emitting layer of the first component. The method also includes aligning first contacts of the first component with second contacts of the second component, and subsequently performing hybrid bonding of the first component to the second component by performing dielectric bonding of a first dielectric material of the first component with a second dielectric material of the second component at a first temperature, and subsequently performing metal bonding of the first contacts of the first component with the second contacts of the second component by annealing the first contacts and the second contacts at a second temperature.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 12, 2020
    Inventors: Stephan Lutgen, Thomas Lauermann
  • Publication number: 20200357954
    Abstract: Disclosed herein are techniques for bonding components of LEDs. According to certain embodiments, a micro-LED includes a first component having a semiconductor layer stack including an n-side semiconductor layer, an active light emitting layer, and a p-side semiconductor layer. The semiconductor layer stack includes a III-V semiconductor material. The micro-LED also includes a second component having a passive or an active matrix integrated circuit within a Si layer. A first dielectric material of the first component is bonded to a second dielectric material of the second component, first contacts of the first component are aligned with and bonded to second contacts of the second component, a surface recombination velocity (SRV) of the micro-LED is less than or equal to 3E4 cm/s, and an e-h diffusion of the micro-LED is less than or equal to 20 cm2/s.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 12, 2020
    Inventors: Stephan LUTGEN, Thomas LAUERMANN
  • Publication number: 20200357972
    Abstract: Disclosed herein are techniques for bonding components of LEDs. According to certain embodiments, a device includes a first component and a second component. The first component includes a semiconductor layer stack having an n-side semiconductor layer, an active light emitting layer, and a p-side semiconductor layer. The semiconductor layer stack includes a III-V semiconductor material. The second component includes a passive or an active matrix integrated circuit within a Si layer. A first dielectric material of the first component is bonded to a second dielectric material of the second component. First contacts of the first component are aligned with and bonded to second contacts of the second component. The first contacts of the first component form a first pattern within the first dielectric material of the first component, and the second contacts of the second component form a second pattern within the second dielectric material of the second component.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 12, 2020
    Inventors: Stephan LUTGEN, Thomas LAUERMANN
  • Publication number: 20200357952
    Abstract: Disclosed herein are techniques for bonding components of LEDs. According to certain embodiments, a device includes a first component having a semiconductor layer stack including an n-side semiconductor layer, an active light emitting layer, and a p-side semiconductor layer. A plurality of mesa shapes are formed within the n-side semiconductor layer, the active light emitting layer, and the p-side semiconductor layer. The semiconductor layer stack comprises a III-V semiconductor material. The device also includes a second component having a passive or an active matrix integrated circuit within a Si layer. A first dielectric material of the first component is bonded to a second dielectric material of the second component, first contacts of the first component are aligned with and bonded to second contacts of the second component, and a run-out between the first contacts and the second contacts is less than 200 nm.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 12, 2020
    Inventors: Stephan LUTGEN, Thomas LAUERMANN
  • Publication number: 20200313036
    Abstract: Disclosed herein are methods, systems, and apparatuses for an light emitting diode (LED) array apparatus. In some embodiments, the LED array apparatus may include a plurality of mesas etched from a layered epitaxial structure. The layered epitaxial structure may include a P-type doped semiconductor layer, a active layer, and an N-type doped semiconductor layer. The LED array apparatus may also include one or more regrowth semiconductor layers, including a first regrowth semiconductor layer, which may be grown epitaxially over etched facets of the plurality of mesas. In some cases, for each mesa, the first regrowth semiconductor layer may overlay etched facets of the P-type doped semiconductor layer, the active layer, and the N-type doped semiconductor layer, around an entire perimeter of the mesa.
    Type: Application
    Filed: March 29, 2020
    Publication date: October 1, 2020
    Inventors: Markus BROELL, Michael GRUNDMANN, David HWANG, Stephan LUTGEN, Brian Matthew MCSKIMMING, Anurag TYAGI
  • Publication number: 20200292851
    Abstract: A pupil-replicating waveguide suitable for operation with a coherent light source is disclosed. A waveguide body has opposed surfaces for guiding a beam of image light. An out-coupling element is disposed in an optical path of the beam for out-coupling portions of the beam at a plurality of spaced apart locations along the optical path. Electrodes are coupled to at least a portion of the waveguide body for modulating an optical path length of the optical path of the beam to create time-varying phase delays between the portions of the beam out-coupled by the out-coupling element.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 17, 2020
    Inventors: Andrew Maimone, Andrew Ouderkirk, Hee Yoon Lee, Ningfeng Huang, Maxwell Parsons, Scott Charles McEldowney, Babak Amirsolaimani, Pasi Saarikko, Wanli Chi, Giuseppe Calafiore, Alexander Koshelev, Barry David Silverstein, Lu Lu, Wai Sze Tiffany Lam, Gang Li, Stephan Lutgen, Francois Olivier, David Massoubre
  • Patent number: 10705353
    Abstract: A pupil-replicating waveguide suitable for operation with a coherent light source is disclosed. A waveguide body has opposed surfaces for guiding a beam of image light. An out-coupling element is disposed in an optical path of the beam for out-coupling portions of the beam at a plurality of spaced apart locations along the optical path. Electrodes are coupled to at least a portion of the waveguide body for modulating an optical path length of the optical path of the beam to create time-varying phase delays between the portions of the beam out-coupled by the out-coupling element.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: July 7, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: Andrew Maimone, Andrew Ouderkirk, Hee Yoon Lee, Ningfeng Huang, Maxwell Parsons, Scott Charles McEldowney, Babak Amirsolaimani, Pasi Saarikko, Wanli Chi, Giuseppe Calafiore, Alexander Koshelev, Barry David Silverstein, Lu Lu, Wai Sze Tiffany Lam, Gang Li, Stephan Lutgen, Francois Olivier, David Massoubre
  • Publication number: 20200194623
    Abstract: Disclosed herein are systems and methods for reducing surface recombination losses in micro-LEDs. In some embodiments, a method includes increasing a bandgap in an outer region of a semiconductor layer by implanting ions in the outer region of the semiconductor layer and subsequently annealing the outer region of the semiconductor layer to intermix the ions with atoms within the outer region of the semiconductor layer. The semiconductor layer includes an active light emitting layer. A light outcoupling surface of the semiconductor layer has a diameter of less than 10 ?m. The outer region of the semiconductor layer extends from an outer surface of the semiconductor layer to a central region of the semiconductor layer that is shaded by a mask during the implanting of the ions.
    Type: Application
    Filed: February 25, 2020
    Publication date: June 18, 2020
    Inventors: Thomas Lauermann, Stephan Lutgen, David Hwang
  • Publication number: 20200192130
    Abstract: A pupil-replicating waveguide suitable for operation with a coherent light source is disclosed. A waveguide body has opposed surfaces for guiding a beam of image light. An out-coupling element is disposed in an optical path of the beam for out-coupling portions of the beam at a plurality of spaced apart locations along the optical path. Electrodes are coupled to at least a portion of the waveguide body for modulating an optical path length of the optical path of the beam to create time-varying phase delays between the portions of the beam out-coupled by the out-coupling element.
    Type: Application
    Filed: December 18, 2018
    Publication date: June 18, 2020
    Inventors: Andrew Maimone, Andrew Ouderkirk, Hee Yoon Lee, Ningfeng Huang, Maxwell Parsons, Scott Charles McEldowney, Babak Amirsolaimani, Pasi Saarikko, Wanli Chi, Giuseppe Calafiore, Alexander Koshelev, Barry David Silverstein, Lu Lu, Wai Sze Tiffany Lam, Gang Li, Stephan Lutgen, Francois Olivier, David Massoubre
  • Patent number: 10658500
    Abstract: A layer structure for a normally-off transistor has an electron-supply layer made of a group-III-nitride material, a back-barrier layer made of a group-III-nitride material, a channel layer between the electron-supply layer and the back-barrier layer, made of a group-III-nitride material having a band-gap energy that is lower than the band-gap energies of the other layer mentioned. The material of the back-barrier layer is of p-type conductivity, while the material of the electron-supply layer and the material of the channel layer are not of p-type conductivity, the band-gap energy of the electron-supply layer is smaller than the band-gap energy of the back-barrier layer. In absence of an external voltage a lower conduction-band-edge of the third group-III-nitride material in the channel layer is higher in energy than a Fermi level of the material in the channel layer.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: May 19, 2020
    Assignee: AZURSPACE Solar Power GmbH
    Inventors: Stephan Lutgen, Saad Murad
  • Patent number: 10644196
    Abstract: Disclosed herein are systems and methods for reducing surface recombination losses in micro-LEDs. In some embodiments, a method includes reducing a lateral carrier diffusion in an outer region of a semiconductor layer by implanting ions in the outer region of the semiconductor layer. The semiconductor layer includes an active light emitting layer. An outcoupling surface of the semiconductor layer has a diameter of less than 10 ?m. The outer region of the semiconductor layer extends from an outer surface of the semiconductor layer to a central region of the semiconductor layer that is shaded by a mask during the implanting of the ions.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: May 5, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: Thomas Lauermann, Stephan Lutgen, David Hwang
  • Publication number: 20200127159
    Abstract: A emitting diode (LED) includes an epitaxial structure defining a base and a mesa on the base. The base defines a light emitting surface of the LED and includes current spreading layer. The mesa includes a thick confinement layer, a light generation area on the thick confinement layer to emit light, a thin confinement layer on the light generation area, and a contact layer on the thin confinement layer, the contact layer defining a top of the mesa. A reflective contact is on the contact layer to reflect a portion of the light emitted from the light generation area, the reflected light being collimated at the mesa and directed through the base to the light emitting surface. In some embodiments, the epitaxial structure grown on a non-transparent substrate. The substrate is removed, or used to form an extended reflector to collimate light.
    Type: Application
    Filed: October 10, 2019
    Publication date: April 23, 2020
    Inventors: Stephan Lutgen, David Massoubre
  • Patent number: 10622519
    Abstract: Disclosed herein are systems and methods for reducing surface recombination losses in micro-LEDs. In some embodiments, a method includes increasing a bandgap in an outer region of a semiconductor layer by implanting ions in the outer region of the semiconductor layer and subsequently annealing the outer region of the semiconductor layer to intermix the ions with atoms within the outer region of the semiconductor layer. The semiconductor layer includes an active light emitting layer. A light outcoupling surface of the semiconductor layer has a diameter of less than 10 ?m. The outer region of the semiconductor layer extends from an outer surface of the semiconductor layer to a central region of the semiconductor layer that is shaded by a mask during the implanting of the ions.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: April 14, 2020
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Thomas Lauermann, Stephan Lutgen, David Hwang
  • Publication number: 20200105968
    Abstract: Disclosed herein are light emitting diodes (LEDs) having a high efficiency. A light emitting diode including an active light emitting layer within a semiconductor layer is provided. The semiconductor layer has a mesa shape. The light emitting diode also includes a substrate having a first surface on which the semiconductor layer is positioned and an outcoupling surface opposite to the first surface. Light generated by the active light emitting layer is incident on the outcoupling surface and propagates toward an optical element downstream of the outcoupling surface. The light emitting diode also includes a first anti-reflection coating adjacent to the outcoupling surface; an index-matched material between the outcoupling surface and the optical element, wherein an index of refraction of the index-matched material is greater than or equal to an index of refraction of the optical element; and/or secondary optics adjacent to the outcoupling surface.
    Type: Application
    Filed: September 17, 2019
    Publication date: April 2, 2020
    Inventor: Stephan Lutgen