Patents by Inventor Stephen R. Quake

Stephen R. Quake has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160333405
    Abstract: A precise measurement of the immunological receptor diversity present in a sample is obtained by sequence analysis. Samples of interest are generally complex, comprising more than 102, 103, 104, 105, 106, 107, 108, 109, 1010, 1011, 1012 or more different sequences for a receptor of interest. Immunological receptors of interest include immunoglobulins, T cell antigen receptors, and major histocompatibility receptors. The specific composition of immunological receptor sequence variations in the sample can be recorded and output. The composition is useful for predictive, diagnostic and therapeutic methods relating to the immune capabilities and history of an individual. Such predictions and diagnoses are used to guide clinical decisions.
    Type: Application
    Filed: February 10, 2016
    Publication date: November 17, 2016
    Inventors: Stephen R. Quake, Joshua Weinstein, Ning Jiang, Daniel S. Fisher
  • Patent number: 9487802
    Abstract: Viral infection is a persistent cause of human disease. Guided nuclease systems target the genomes of viral infections, rendering the viruses incapacitated.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: November 8, 2016
    Assignee: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Stephen R. Quake, Jianbin Wang
  • Publication number: 20160318020
    Abstract: This invention provides microfabricated devices and methods for detecting, analyzing and sorting biological materials and particles. Droplets containing the particles are provided in an extrusion fluid, passed through a detection region, and then directed into a branch channel according to predetermined characteristics. For example, cells or viral particles contained in droplets of aqueous solvent are flowed past a detector in the nonpolar extrusion fluid decane, and routed into a selected branch channel for subsequent analysis or use.
    Type: Application
    Filed: April 7, 2016
    Publication date: November 3, 2016
    Inventors: Stephen R. Quake, Todd Thorsen
  • Publication number: 20160312302
    Abstract: Methods are provided for diagnosis and prognosis of disease by analyzing expression of a set of genes obtained from single cell analysis. Classification allows optimization of treatment, and determination of whether on whether to proceed with a specific therapy, and how to optimize dose, choice of treatment, and the like. Single cell analysis also provides for the identification and development of therapies which target mutations and/or pathways in disease-state cells.
    Type: Application
    Filed: April 22, 2016
    Publication date: October 27, 2016
    Inventors: Michael F. Clarke, Stephen R. Quake, Piero D. Dalerba, Huiping Liu, Anne Leyrat, Tomer Kalisky, Maximilian Diehn, Jianbin Wang
  • Patent number: 9404157
    Abstract: Disclosed is a method to achieve digital quantification of DNA (i.e., counting differences between identical sequences) using direct shotgun sequencing followed by mapping to the chromosome of origin and enumeration of fragments per chromosome. The preferred method uses massively parallel sequencing, which can produce tens of millions of short sequence tags in a single run and enabling a sampling that can be statistically evaluated. By counting the number of sequence tags mapped to a predefined window in each chromosome, the over- or under-representation of any chromosome in maternal plasma DNA contributed by an aneuploid fetus can be detected. This method does not require the differentiation of fetal versus maternal DNA. The median count of autosomal values is used as a normalization constant to account for differences in total number of sequence tags is used for comparison between samples and between chromosomes.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: August 2, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hei-Mun Christina Fan, Stephen R. Quake
  • Patent number: 9383337
    Abstract: The invention relates to a microfabricated device and methods of using the device for analyzing and sorting polynucleotide molecules by size.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: July 5, 2016
    Assignee: California Institute of Technology
    Inventors: Stephen R. Quake, Wayne D. Volksmuth
  • Patent number: 9353414
    Abstract: Disclosed is a method to achieve digital quantification of DNA (i.e., counting differences between identical sequences) using direct shotgun sequencing followed by mapping to the chromosome of origin and enumeration of fragments per chromosome. The preferred method uses massively parallel sequencing, which can produce tens of millions of short sequence tags in a single run and enabling a sampling that can be statistically evaluated. By counting the number of sequence tags mapped to a predefined window in each chromosome, the over- or under-representation of any chromosome in maternal plasma DNA contributed by an aneuploid fetus can be detected. This method does not require the differentiation of fetal versus maternal DNA. The median count of autosomal values is used as a normalization constant to account for differences in total number of sequence tags is used for comparison between samples and between chromosomes.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: May 31, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hei-Mun Christina Fan, Stephen R. Quake
  • Patent number: 9340765
    Abstract: A method to suppress biofilm formation in a growth chamber of a chemostat is described. The method includes the steps of adding a lysis agent to an isolated portion of the growth chamber, and reuniting the isolated portion with the rest of the growth chamber. The microfluidic chemostat includes a growth chamber having a plurality of compartments. Each of the compartments may be fluidly isolated from the rest of the growth chamber by one or more actuatable valves. The chemostat also included a nutrient supply-line to supply growth medium to the growth chamber, and an output port to remove fluids from the growth chamber.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: May 17, 2016
    Assignee: California Institute of Technology
    Inventors: Frederick Balagadde, Carl L. Hansen, Emil Kartalov, Stephen R. Quake
  • Publication number: 20160123958
    Abstract: The present invention provides microfluidic devices and methods for using the same. In particular, microfluidic devices of the present invention are useful in conducting a variety of assays and high throughput screening. Microfluidic devices of the present invention include elastomeric components and comprise a main flow channel; a plurality of branch flow channels; a plurality of control channels; and a plurality of valves. Preferably, each of the valves comprises one of the control channels and an elastomeric segment that is deflectable into or retractable from the main or branch flow channel upon which the valve operates in response to an actuation force applied to the control channel.
    Type: Application
    Filed: October 30, 2015
    Publication date: May 5, 2016
    Inventors: Stephen R. Quake, Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer
  • Patent number: 9329179
    Abstract: The invention provides devices and methods for surface patterning the substrate of a microfluidic device, and for detection and analysis of interactions between molecules by mechanically trapping a molecular complex while substantially expelling solvent and unbound solute molecules. Examples of molecular complexes include protein-protein complexes and protein-nucleic acid complexes.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: May 3, 2016
    Assignee: California Institute of Technology
    Inventors: Stephen R. Quake, Sebastian J. Maerkl
  • Patent number: 9329170
    Abstract: Methods are provided for diagnosis and prognosis of disease by analyzing expression of a set of genes obtained from single cell analysis. Classification allows optimization of treatment, and determination of whether on whether to proceed with a specific therapy, and how to optimize dose, choice of treatment, and the like. Single cell analysis also provides for the identification and development of therapies which target mutations and/or pathways in disease-state cells.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: May 3, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michael F. Clarke, Stephen R. Quake, Piero D. Dalerba, Huiping Liu, Anne Leyrat, Tomer Kalisky, Maximilian Diehn, Jianbin Wang
  • Patent number: 9290811
    Abstract: A precise measurement of the immunological receptor diversity present in a sample is obtained by sequence analysis. Samples of interest are generally complex, comprising more than 102, 103, 104, 105, 106, 107, 108, 109, 1010, 1011, 1012 or more different sequences for a receptor of interest. Immunological receptors of interest include immunoglobulins, T cell antigen receptors, and major histocompatibility receptors. The specific composition of immunological receptor sequence variations in the sample can be recorded and output. The composition is useful for predictive, diagnostic and therapeutic methods relating to the immune capabilities and history of an individual. Such predictions and diagnoses are used to guide clinical decisions.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: March 22, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Stephen R. Quake, Joshua Weinstein, Ning Jiang, Daniel S. Fisher
  • Publication number: 20160076023
    Abstract: The present invention provides an approach to increase the effective read length of commercially available sequencing platforms to several kilobases and be broadly applied to obtain long sequence reads from mixed template populations. A method for generating extended sequence reads of long DNA molecules in a sample, comprising the steps of: assigning a specific barcode sequence to each template DNA molecule in a sample to obtain barcode-tagged molecules; amplifying the barcode-tagged molecules; fragmenting the amplified barcode-tagged molecules to obtain barcode-containing fragments; juxtaposing the barcode-containing fragments to random short segments of the original DNA template molecule during the process of generating a sequencing library to obtain demultiplexed reads; and assembling the demultiplexed reads to obtain extended sequence reads for each DNA template molecule, is disclosed. Also disclosed are methods systems and software for assembling paired end sequence reads to produce extended reads.
    Type: Application
    Filed: April 17, 2014
    Publication date: March 17, 2016
    Applicant: Agency for Science, Technology and Research
    Inventors: Stephen R. Quake, William F. Burkholder, Lewis Z. Hong
  • Patent number: 9267174
    Abstract: The invention provides a non-invasive technique for the differential detection of multiple genotypes and/or mutations for a plurality of target genes in a biological sample containing genetic material from different genomic sources. Methods are conducted using multiplex amplification of a plurality of target sequences from the biological sample, and sequencing is used to detect and enumerate genetic mutations and chromosomal abnormalities at the single nucleotide level.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: February 23, 2016
    Assignee: Stanford University
    Inventors: Stephen R. Quake, Wei Gu, Hei-Mun Christina Fan
  • Patent number: 9249460
    Abstract: The invention generally relates to methods for obtaining a sequence, such as a consensus sequence or a haplotype sequence. In certain embodiments, methods of the invention involve determining an amount of amplifiable nucleic acid present in a sample, partitioning the nucleic acid based upon results of the determining step such that each partitioned portion includes, on average, a subset of unique sequences, sequencing the nucleic acid to obtain sequence reads, and assembling a consensus sequence from the reads.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: February 2, 2016
    Assignee: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Dmitry Pushkarev, Stephen R. Quake, Ayelet Voskoboynik, Michael Kertesz
  • Publication number: 20160015265
    Abstract: Glaucoma is the second most common cause of blindness in the global world. It is a multifactorial disease with several risk factors, of which intraocular pressure (IOP) is the most important. IOP measurements are used for glaucoma diagnosis and patient monitoring. IOP has wide diurnal fluctuation, and is dependent on body posture, so the occasional measurements done by the eye care expert in clinic can be misleading. We provide an implantable sensor, based on microfluidic principles, which in one example has 1 mmHg limit of detection, high sensitivity and excellent reproducibility. This sensor has an optical interface, which enables IOP to be read with, for example, a cell phone camera. The design, fabrication, along with the option of self-monitoring are promising steps toward better patient care and treatment for this devastating disease.
    Type: Application
    Filed: February 28, 2014
    Publication date: January 21, 2016
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yosef Mandel, Ismail E Araci, Stephen R. Quake
  • Publication number: 20160017420
    Abstract: The invention generally relates to methods for assessing the health of a tissue by characterizing circulating nucleic acids in a biological sample. According to certain embodiments, methods for assessing the health of a tissue include the steps of detecting a sample level of RNA in a biological sample, comparing the sample level of RNA to a reference level of RNA specific to the tissue, determining whether a difference exists between the sample level and the reference level, and characterizing the tissue as abnormal if a difference is detected.
    Type: Application
    Filed: September 22, 2015
    Publication date: January 21, 2016
    Inventors: Lian Chye Winston Koh, Stephen R. Quake, Hei-Mun Christina Fan, Wenying Pan
  • Publication number: 20160007851
    Abstract: Continuous pressure sensing is important for patients with several different conditions. We provide an implantable sensor, based on microfluidic principles, which in one example has 1 mmHg limit of detection, high sensitivity and excellent reproducibility. This sensor has an optical interface, which enables pressure to be read with, for example, a cell phone camera. The design and fabrication, along with the option of self-monitoring are promising steps toward better patient care and treatment.
    Type: Application
    Filed: September 21, 2015
    Publication date: January 14, 2016
    Inventors: Ismail E. Araci, Stephen R. Quake, Melanie Hayden Gephart
  • Patent number: 9234240
    Abstract: A precise measurement of the immunological receptor diversity present in a sample is obtained by sequence analysis. Samples of interest are generally complex, comprising more than 102, 103, 104, 105, 106, 107, 108, 109, 1010, 1011, 1012 or more different sequences for a receptor of interest. Immunological receptors of interest include immunoglobulins, T cell antigen receptors, and major histocompatibility receptors. The specific composition of immunological receptor sequence variations in the sample can be recorded and output. The composition is useful for predictive, diagnostic and therapeutic methods relating to the immune capabilities and history of an individual. Such predictions and diagnoses are used to guide clinical decisions.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: January 12, 2016
    Assignee: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Stephen R. Quake, Joshua Weinstein, Ning Jiang, Daniel S. Fisher
  • Publication number: 20150376583
    Abstract: Viral infection is a persistent cause of human disease. Guided nuclease systems target the genomes of viral infections, rendering the viruses incapacitated.
    Type: Application
    Filed: July 2, 2015
    Publication date: December 31, 2015
    Applicant: The Board of Trustees of The Leland Stanford Junior University
    Inventors: Stephen R. Quake, Jianbin Wang