Patents by Inventor Stephen R. Quake
Stephen R. Quake has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20150375227Abstract: This invention provides microfabricated devices and methods for detecting, analyzing and sorting biological materials and particles. Droplets containing the particles are provided in an extrusion fluid, passed through a detection region, and then directed into a branch channel according to predetermined characteristics. For example, cells or viral particles contained in droplets of aqueous solvent are flowed past a detector in the nonpolar extrusion fluid decane, and routed into a selected branch channel for subsequent analysis or use.Type: ApplicationFiled: January 10, 2014Publication date: December 31, 2015Applicant: California Institute of TechnologyInventors: Stephen R. Quake, Todd Thorsen
-
Patent number: 9205423Abstract: High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers of a microfabricated fluidic device. The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers, thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.Type: GrantFiled: February 25, 2013Date of Patent: December 8, 2015Assignees: California Institute of Technology, The Regents of the University of CaliforniaInventors: Carl L. Hansen, Stephen R. Quake, James M. Berger
-
Publication number: 20150337361Abstract: The invention provides methods, devices, compositions and kits for diagnosing or predicting transplant status or outcome in a subject who has received a transplant.Type: ApplicationFiled: February 24, 2014Publication date: November 26, 2015Inventors: Stephen R. Quake, Thomas M. Snyder, Hannah Valantine
-
Patent number: 9176137Abstract: The present invention provides microfluidic devices and methods for using the same. In particular, microfluidic devices of the present invention are useful in conducting a variety of assays and high throughput screening. Microfluidic devices of the present invention include elastomeric components and comprise a main flow channel; a plurality of branch flow channels; a plurality of control channels; and a plurality of valves. Preferably, each of the valves comprises one of the control channels and an elastomeric segment that is deflectable into or retractable from the main or branch flow channel upon which the valve operates in response to an actuation force applied to the control channel.Type: GrantFiled: March 17, 2014Date of Patent: November 3, 2015Assignee: California Institute of TechnologyInventors: Stephen R. Quake, Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer
-
Publication number: 20150292009Abstract: A precise measurement of the immunological receptor diversity present in a sample is obtained by sequence analysis. Samples of interest are generally complex, comprising more than 102, 103, 104, 105, 106, 107, 108, 109, 1010, 1011, 1012 or more different sequences for a receptor of interest. Immunological receptors of interest include immunoglobulins, T cell antigen receptors, and major histocompatibility receptors. The specific composition of immunological receptor sequence variations in the sample can be recorded and output. The composition is useful for predictive, diagnostic and therapeutic methods relating to the immune capabilities and history of an individual. Such predictions and diagnoses are used to guide clinical decisions.Type: ApplicationFiled: June 9, 2015Publication date: October 15, 2015Inventors: Stephen R. Quake, Joshua Weinstein, Ning Jiang, Daniel S. Fisher
-
Publication number: 20150276089Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.Type: ApplicationFiled: February 24, 2014Publication date: October 1, 2015Applicant: California Institute of TechnologyInventors: Marc Alexander Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake, Markus Enzelberger, Mark L. Adams, Carl L. Hansen
-
Publication number: 20150238960Abstract: Nucleic acid from cells and viruses sampled from a variety of environments may purified and expressed utilizing microfluidic techniques. In accordance with one embodiment of the present invention, individual or small groups of cells or viruses may be isolated in microfluidic chambers by dilution, sorting, and/or segmentation. The isolated cells or viruses may be lysed directly in the microfluidic chamber, and the resulting nucleic acid purified by exposure to affinity beads. Subsequent elution of the purified nucleic acid may be followed by ligation and cell transformation, all within the same microfluidic chip. In one specific application, cell isolation, lysis, and nucleic acid purification may be performed utilizing a highly parallelized microfluidic architecture to construct gDNA and cDNA libraries.Type: ApplicationFiled: September 23, 2014Publication date: August 27, 2015Inventors: Jong Wook Hong, Vincent Studer, W. French Anderson, Stephen R. Quake, Jared Leadbetter
-
Publication number: 20150183633Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.Type: ApplicationFiled: September 30, 2014Publication date: July 2, 2015Inventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake
-
Publication number: 20150133391Abstract: Methods, devices, compositions and kits are provided for analysis of the microbiome or individual components thereof in an individual. The methods find use in a determination of infection, in analysis of the microbiome structure, in determining the immunocompetence of an individual, and the like. In some embodiments of the invention, the individual is treated with a therapeutic regimen, e.g. drugs, diet, radiation therapy, and the like.Type: ApplicationFiled: November 7, 2014Publication date: May 14, 2015Inventors: Iwijn de Vlaminick, Michael Kertesz, Kiran Kaur Khush, Mark Alec Kowarsky, Lance Martin, Stephen R. Quake, Hannah Valantine
-
Patent number: 8992858Abstract: A microfluidic device comprises pumps, valves, and fluid oscillation dampers. In a device employed for sorting, an entity is flowed by the pump along a flow channel through a detection region to a junction. Based upon an identity of the entity determined in the detection region, a waste or collection valve located on opposite branches of the flow channel at the junction are actuated, thereby routing the entity to either a waste pool or a collection pool. A damper structure may be located between the pump and the junction. The damper reduces the amplitude of oscillation pressure in the flow channel due to operation of the pump, thereby lessening oscillation in velocity of the entity during sorting process. The microfluidic device may be formed in a block of elastomer material, with thin membranes of the elastomer material deflectable into the flow channel to provide pump or valve functionality.Type: GrantFiled: August 21, 2007Date of Patent: March 31, 2015Assignee: The United States of America National Institute of Health (NIH), U.S. Dept. of Health and Human Services (DHHS)Inventors: Hou-Pu Chou, Anne Y. Fu, Stephen R. Quake
-
Publication number: 20150031116Abstract: The invention relates to a microfabricated device for the rapid detection of DNA, proteins or other molecules associated with a particular disease. The devices and methods of the invention can be used for the simultaneous diagnosis of multiple diseases by detecting molecules (e.g. amounts of molecules), such as polynucleotides (e.g., DNA) or proteins (e.g., antibodies), by measuring the signal of a detectable reporter associated with hybridized polynucleotides or antigen/antibody complex. In the microfabricated device according to the invention, detection of the presence of molecules (i.e., polynucleotides, proteins, or antigen/antibody complexes) are correlated to a hybridization signal from an optically-detectable (e.g. fluorescent) reporter associated with the bound molecules. These hybridization signals can be detected by any suitable means, for example optical, and can be stored for example in a computer as a representation of the presence of a particular gene.Type: ApplicationFiled: March 5, 2014Publication date: January 29, 2015Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Stephen R. Quake, Hou-Pu Chou
-
Patent number: 8936764Abstract: The present invention provides microfluidic devices and methods using the same in various types of thermal cycling reactions. Certain devices include a rotary microfluidic channel and a plurality of temperature regions at different locations along the rotary microfluidic channel at which temperature is regulated. Solution can be repeatedly passed through the temperature regions such that the solution is exposed to different temperatures. Other microfluidic devices include an array of reaction chambers formed by intersecting vertical and horizontal flow channels, with the ability to regulate temperature at the reaction chambers. The microfluidic devices can be used to conduct a number of different analyzes, including various primer extension reactions and nucleic acid amplification reactions.Type: GrantFiled: July 2, 2013Date of Patent: January 20, 2015Assignee: California Institute of TechnologyInventors: Markus M. Enzelberger, Carl L. Hansen, Jian Liu, Stephen R. Quake, Chiem Ma
-
Patent number: 8932461Abstract: Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.Type: GrantFiled: June 28, 2011Date of Patent: January 13, 2015Assignee: California Institute of TechnologyInventors: Stephen R. Quake, Joshua S. Marcus, Carl L. Hansen
-
Publication number: 20140347953Abstract: A static fluid and a second fluid are placed into contact along a microfluidic free interface and allowed to mix by diffusion without convective flow across the interface. In accordance with one embodiment of the present invention, the fluids are static and initially positioned on either side of a closed valve structure in a microfluidic channel having a width that is tightly constrained in at least one dimension. The valve is then opened, and no-slip layers at the sides of the microfluidic channel suppress convective mixing between the two fluids along the resulting interface. Applications for microfluidic free interfaces in accordance with embodiments of the present invention include, but are not limited to, protein crystallization studies, protein solubility studies, determination of properties of fluidics systems, and a variety of biological assays such as diffusive immunoassays, substrate turnover assays, and competitive binding assays.Type: ApplicationFiled: April 25, 2014Publication date: November 27, 2014Applicants: California Institute of Technology, The Regents of the University of CaliforniaInventors: Carl L. Hansen, Stephen R. Quake, James M. Berger
-
Publication number: 20140329691Abstract: Disclosed is a method to achieve digital quantification of DNA (i.e., counting differences between identical sequences) using direct shotgun sequencing followed by mapping to the chromosome of origin and enumeration of fragments per chromosome. The preferred method uses massively parallel sequencing, which can produce tens of millions of short sequence tags in a single run and enabling a sampling that can be statistically evaluated. By counting the number of sequence tags mapped to a predefined window in each chromosome, the over- or under-representation of any chromosome in maternal plasma DNA contributed by an aneuploid fetus can be detected. This method does not require the differentiation of fetal versus maternal DNA. The median count of autosomal values is used as a normalization constant to account for differences in total number of sequence tags is used for comparison between samples and between chromosomes.Type: ApplicationFiled: January 30, 2014Publication date: November 6, 2014Applicant: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Hei-Mun Christina Fan, Stephen R. Quake
-
Patent number: 8877442Abstract: The present invention provides a method, device and a computer program for haplotyping single cells, such that a sample taken from a pregnant female, without directly sampling the fetus, provides the ability to non-invasively determine the fetal genome. The method can be performed by determining the parental and inherited haplotypes, or can be performed merely on the basis of the mother's genetic information, obtained preferably in a blood or serum sample. The novel device allows for sequence analysis of single chromosomes from a single cell, preferably by partitioning single chromosomes from a metaphase cell into long, thin channels where a sequence analysis can be performed.Type: GrantFiled: December 7, 2011Date of Patent: November 4, 2014Assignee: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Stephen R. Quake, Hei-Mun C. Fan
-
Publication number: 20140322489Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.Type: ApplicationFiled: March 18, 2014Publication date: October 30, 2014Applicant: California Institute of TechnologyInventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake
-
Patent number: 8871446Abstract: Nucleic acid from cells and viruses sampled from a variety of environments may purified and expressed utilizing microfluidic techniques. In accordance with one embodiment of the present invention, individual or small groups of cells or viruses may be isolated in microfluidic chambers by dilution, sorting, and/or segmentation. The isolated cells or viruses may be lysed directly in the microfluidic chamber, and the resulting nucleic acid purified by exposure to affinity beads. Subsequent elution of the purified nucleic acid may be followed by ligation and cell transformation, all within the same microfluidic chip. In one specific application, cell isolation, lysis, and nucleic acid purification may be performed utilizing a highly parallelized microfluidic architecture to construct gDNA and cDNA libraries.Type: GrantFiled: October 2, 2003Date of Patent: October 28, 2014Assignee: California Institute of TechnologyInventors: Jong Wook Hong, Vincent Studer, W. French Anderson, Stephen R. Quake, Jared Leadbetter
-
Patent number: 8846183Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.Type: GrantFiled: October 20, 2011Date of Patent: September 30, 2014Assignee: California Institute of TechnologyInventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake
-
Publication number: 20140256561Abstract: Surface chemistries for the visualization of labeled single molecules (analytes) with improved signal-to-noise properties are provided. To be observed, analyte molecules are bound to surface attachment features that are spaced apart on the surface such that when the analytes are labeled adjacent analytes are optically resolvable from each other. One way to express this concept is that binding elements should be spaced apart such that the Guassian point spread functions of adjacent labels do not overlap. Another way of expressing this concept is that the surface binding elements should be spaced apart by a distance equal to at least the diffraction limit for an optical label attached to the bound analytes.Type: ApplicationFiled: November 27, 2013Publication date: September 11, 2014Applicant: FLUIDIGM CORPORATIONInventors: Jerrod Schwartz, Stephen R. Quake, Milan Mrksich