Patents by Inventor Steven Avanzino

Steven Avanzino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7790497
    Abstract: The present method of fabricating a resistive memory device includes the steps of providing a first electrode, oxidizing a portion of the first electrode with an oxidizing agent, providing a metal body on the oxidized portion of the first electrode, oxidizing the entire metal body with an oxidizing agent, and providing a second electrode on the oxidized metal body.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: September 7, 2010
    Assignee: Spansion LLC
    Inventors: Steven Avanzino, Jeffrey A. Shields, Joffre Bernard, Suzette K. Pangrle
  • Patent number: 7706168
    Abstract: The present method provides annealing of a resistive memory device so as to provide that the device in its erased state has a greatly increased resistance as compared to a prior art approach. The annealing also provides that the device may be erased by application of any of a plurality of electrical potentials within an increased range of electrical potentials as compared to the prior art.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: April 27, 2010
    Assignee: Spansion LLC
    Inventors: Tzu-Ning Fang, Steven Avanzino, Swaroop Kaza, Dongxiang Liao, Christie Marrian, Sameer Haddad
  • Publication number: 20090212283
    Abstract: In an electronic device, a diode and a resistive memory device are connected in series. The diode may take a variety of forms, including oxide or silicon layers, and one of the layers of the diode may make up a layer of the resistive memory device which is in series with that diode.
    Type: Application
    Filed: February 27, 2008
    Publication date: August 27, 2009
    Inventors: Manuj Rathor, An Chen, Steven Avanzino, Suzette K. Pangrle
  • Publication number: 20090163018
    Abstract: The present method of fabricating a resistive memory device includes the steps of providing a first electrode, oxidizing a portion of the first electrode with an oxidizing agent, providing a metal body on the oxidized portion of the first electrode, oxidizing the entire metal body with an oxidizing agent, and providing a second electrode on the oxidized metal body.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 25, 2009
    Inventors: Steven Avanzino, Jeffrey A. Shields, Joffre Bernard, Suzette K. Pangrle
  • Publication number: 20090109727
    Abstract: The present method provides annealing of a resistive memory device so as to provide that the device in its erased state has a greatly increased resistance as compared to a prior art approach. The annealing also provides that the device may be erased by application of any of a plurality of electrical potentials within an increased range of electrical potentials as compared to the prior art.
    Type: Application
    Filed: October 30, 2007
    Publication date: April 30, 2009
    Inventors: Tzu-Ning Fang, Steven Avanzino, Swaroop Kaza, Dongxiang Liao, Christie Marrian, Sameer Haddad
  • Publication number: 20090109598
    Abstract: In a method of fabricating a metal-insulator-metal (MIM) device, initially, a first electrode is provided. An oxide layer is provided on the first electrode, and a protective layer is provided on the oxide layer. An opening through the protective layer is provided to expose a portion of the oxide layer, and a portion of the first electrode underlying the exposed portion of the oxide layer is oxidized. A second electrode is provided in contact with the exposed portion of the oxide layer. In alternative embodiments, the initially provided oxide layer may be eliminated, and spacers of insulating material may be provided in the opening.
    Type: Application
    Filed: October 30, 2007
    Publication date: April 30, 2009
    Inventors: Steven Avanzino, Tzu-Ning Fang, Swaroop Kaza, Dongxiang Liao, Wai Lo, Christie Marrian, Sameer Haddad
  • Publication number: 20090072234
    Abstract: In the present electronic test structure comprising, a conductor is provided, overlying a substrate. An electronic device overlies a portion of the conductor and includes a first electrode connected to the conductor, a second electrode, and an insulating layer between the first and second electrodes. A portion of the conductor is exposed for access thereto.
    Type: Application
    Filed: November 17, 2008
    Publication date: March 19, 2009
    Inventors: Steven Avanzino, Suzette K. Pangrle, Manuj Rathor, An Chen, Sameer Haddad, Nicholas Tripsas, Matthew Buynoski
  • Patent number: 7468525
    Abstract: In the present electronic test structure comprising, a conductor is provided, overlying a substrate. An electronic device overlies a portion of the conductor and includes a first electrode connected to the conductor, a second electrode, and an insulating layer between the first and second electrodes. A portion of the conductor is exposed for access thereto.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: December 23, 2008
    Assignee: Spansion LLC
    Inventors: Steven Avanzino, Suzette K. Pangrle, Manuj Rathor, An Chen, Sameer Haddad, Nicholas Tripsas, Matthew Buynoski
  • Patent number: 7384800
    Abstract: In the method of fabricating a metal-insulator-metal (MIM) device, a first electrode of ?-Ta is provided. The Ta of the first electrode is oxidized to form a Ta2O5 layer on the first electrode. A second electrode of ?-Ta is provided on the Ta2O5 layer. Such a device exhibits strong data retention, along with resistance to performance degradation under high temperatures.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: June 10, 2008
    Assignee: Spansion LLC
    Inventors: Steven Avanzino, Sameer Haddad, An Chen, Yi-Ching Jean Wu, Suzette K. Pangrle, Jeffrey A. Shields
  • Publication number: 20080130195
    Abstract: An electronic device includes a first electrode, a second electrode and an insulating layer between the first and second electrodes, which insulating layer may be susceptible to reduction by H2. A gettering layer is provided on and in contact with the first electrode, the gettering layer acting as a protective layer for substantially avoiding reduction of the insulating layer by capturing and immobilizing H2. A glue layer may be provided between the first layer and first electrode. An additional gettering layer may be provided on and in contact with the second electrode, and a glue layer may be provided between the second electrode and additional gettering layer.
    Type: Application
    Filed: December 5, 2006
    Publication date: June 5, 2008
    Inventors: Manuj Rathor, Matthew Buynoski, Joffre F. Bernard, Steven Avanzino, Suzette K. Pangrle
  • Publication number: 20080132068
    Abstract: The present method of fabricating a memory device includes the steps of providing a dielectric layer, providing an opening in the dielectric layer, providing a first conductive body in the opening in the dielectric layer, providing a switching body in the opening, and providing a second conductive body in the opening.
    Type: Application
    Filed: December 5, 2006
    Publication date: June 5, 2008
    Inventors: Suzette K. Pangrle, Steven Avanzino, Sameer Haddad, Michael VanBuskirk, Manuj Rathor, James Xie, Kevin Song, Christie Marrian, Bryan Choo, Fei Wang, Jeffrey A. Shields
  • Publication number: 20080127480
    Abstract: In the method of fabricating a metal-insulator-metal (MIM) device, a first electrode of ?-Ta is provided. The Ta of the first electrode is oxidized to form a Ta2O5 layer on the first electrode. A second electrode of ?-Ta is provided on the Ta2O5 layer. Such a device exhibits strong data retention, along with resistance to performance degradation under high temperatures.
    Type: Application
    Filed: December 5, 2006
    Publication date: June 5, 2008
    Inventors: Steven Avanzino, Sameer Haddad, An Chen, Yi-Ching Jean Wu, Suzette K. Pangrle, Jeffrey A. Shields
  • Publication number: 20080128691
    Abstract: In the present electronic test structure comprising, a conductor is provided, overlying a substrate. An electronic device overlies a portion of the conductor and includes a first electrode connected to the conductor, a second electrode, and an insulating layer between the first and second electrodes. A portion of the conductor is exposed for access thereto.
    Type: Application
    Filed: December 5, 2006
    Publication date: June 5, 2008
    Inventors: Steven Avanzino, Suzette K. Pangrle, Manuj Rathor, An Chen, Sameer Haddad, Nicholas Tripsas, Matthew Buynoski
  • Publication number: 20080123401
    Abstract: A present method of fabricating a memory device includes the steps of providing a dielectric layer;, providing an opening in the dielectric layer, providing a first conductive body in the opening, providing a switching body in the opening, the first conductive body and switching body filling the opening, and providing a second conductive body over the switching body. In an alternate embodiment, a second dielectric layer is provided over the first-mentioned dielectric layer, and the switching body is provided in an opening in the second dielectric layer.
    Type: Application
    Filed: September 14, 2006
    Publication date: May 29, 2008
    Inventors: Suzette K. Pangrle, Steven Avanzino, Sameer Haddad, Michael VanBuskirk, Manuj Rathor, James Xie, Kevin Song, Christie Marrian, Bryan Choo, Fei Wang, Jeffrey A. Shields
  • Patent number: 7307321
    Abstract: The present memory device includes a first electrode, a passive layer, for example Cu2S, on the first electrode, an active layer on the passive layer and including an azole compound, and a second electrode on the active layer. The azoles compound may be for example benzotriazole or 1,2,4-triazole. The active layer may also include Cu2O.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: December 11, 2007
    Assignee: Spansion LLC
    Inventor: Steven Avanzino
  • Patent number: 7220642
    Abstract: A method of fabricating an electronic structure by providing a conductive layer, providing a dielectric layer over the conductive layer, providing first and second openings through the dielectric layer, providing first and second conductive bodies in the first and second openings respectively and in contact with the conductive layer, providing a memory structure over the first conductive body, providing a protective element over the memory structure, and undertaking processing on the second conductive body.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: May 22, 2007
    Assignee: Spansion LLC
    Inventors: Steven Avanzino, Igor Sokolik, Suzette Pangrle, Nicholas H. Tripsas, Jeffrey Shields
  • Publication number: 20060214304
    Abstract: The present memory device include first and second electrodes, a passive layer between the first and second electrodes, and an active layer between the first and second and into which ions from the passive layer may be provided, and from which the ions may be provided into the passive layer. The active layer is made up of a base material and an impurity therein. The combined the material and impurity have a lower diffusion coefficient than the base material alone.
    Type: Application
    Filed: March 25, 2005
    Publication date: September 28, 2006
    Inventors: Zhida Lan, Sameer Haddad, Steven Avanzino
  • Patent number: 7071564
    Abstract: The electromigration and stress migration of Cu interconnects is significantly reduced by forming a composite capping layer comprising a layer of ?-Ta on the upper surface of the inlaid Cu, a layer of tantalum nitride on the ?-Ta layer and a layer of ?-Ta on the tantalum nitride layer. Embodiments include forming a recess in an upper surface of Cu inlaid in a dielectric layer, depositing a layer of ?-Ta at a thickness of 25 ? to 40 ?, depositing a layer of tantalum nitride at a thickness of 20 ? to 100 ? and then depositing a layer of ?-Ta at a thickness of 200 ? to 500 ?. Embodiments further include forming an overlying dielectric layer, forming an opening therein, e.g., a via opening or a dual damascene opening, lining the opening with ?-Ta, and filling the opening with Cu in electrical contact with the underlying inlaid Cu.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: July 4, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Darrell M. Erb, Steven Avanzino, Christy Mei-Chu Woo
  • Publication number: 20060104111
    Abstract: The present memory structure includes thereof a first conductor, a second conductor, a resistive memory cell connected to the second conductor, a first diode connected to the resistive memory cell and the first conductor, and oriented in the forward direction from the resistive memory cell to the first conductor, and a second diode connected to the resistive memory cell and the first conductor, in parallel with the first diode, and oriented in the reverse direction from the resistive memory cell to the first conductor.
    Type: Application
    Filed: November 17, 2004
    Publication date: May 18, 2006
    Inventors: Nicholas Tripsas, Colin Bill, Michael VanBuskirk, Matthew Buynoski, Tzu-Ning Fang, Wei Cai, Suzette Pangrle, Steven Avanzino
  • Publication number: 20060102887
    Abstract: A method of fabricating an electronic structure by providing a conductive layer, providing a dielectric layer over the conductive layer, providing first and second openings through the dielectric layer, providing first and second conductive bodies in the first and second openings respectively and in contact with the conductive layer, providing a memory structure over the first conductive body, providing a protective element over the memory structure, and undertaking processing on the second conductive body.
    Type: Application
    Filed: November 12, 2004
    Publication date: May 18, 2006
    Inventors: Steven Avanzino, Igor Sokolik, Suzette Pangrle, Nicholas Tripsas, Jeffrey Shields