Patents by Inventor Steven Howard

Steven Howard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080037681
    Abstract: An uplink channel response matrix is obtained for each terminal and decomposed to obtain a steering vector used by the terminal to transmit on the uplink. An “effective” uplink channel response vector is formed for each terminal based on its steering vector and its channel response matrix. Multiple sets of terminals are evaluated based on their effective channel response vectors to determine the best set (e.g., with highest overall throughput) for uplink transmission. Each selected terminal performs spatial processing on its data symbol stream with its steering vector and transmits its spatially processed data symbol stream to an access point. The multiple selected terminals simultaneously transmit their data symbol streams via their respective MIMO channels to the access point. The access point performs receiver spatial processing on its received symbol streams in accordance with a receiver spatial processing technique to recover the data symbol streams transmitted by the selected terminals.
    Type: Application
    Filed: October 9, 2007
    Publication date: February 14, 2008
    Applicant: QUALCOMM INCORPORATED
    Inventors: J. Walton, John Ketchum, John Smee, Mark Wallace, Steven Howard
  • Publication number: 20080031372
    Abstract: An access point in a multi-antenna system broadcasts data using spatial spreading to randomize an “effective” channel observed by each user terminal for each block of data symbols broadcast by the access point. At the access point, data is coded, interleaved, and modulated to obtain ND data symbol blocks to be broadcast in NM transmission spans, where ND?1 and NM>1. The ND data symbol blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and broadcast via NT transmit antennas and in one transmission span to user terminals within a broadcast coverage area.
    Type: Application
    Filed: October 10, 2007
    Publication date: February 7, 2008
    Applicant: QUALCOMM INCORPORATED
    Inventors: Jay Walton, John Ketchum, Mark Wallace, Steven Howard
  • Publication number: 20080031374
    Abstract: An access point in a multi-antenna system broadcasts data using spatial spreading to randomize an “effective” channel observed by each user terminal for each block of data symbols broadcast by the access point. At the access point, data is coded, interleaved, and modulated to obtain ND data symbol blocks to be broadcast in NM transmission spans, where ND?1 and NM>1. The ND data symbol blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and broadcast via NT transmit antennas and in one transmission span to user terminals within a broadcast coverage area.
    Type: Application
    Filed: October 10, 2007
    Publication date: February 7, 2008
    Applicant: QUALCOMM INCORPORATED
    Inventors: Jay Walton, John Ketchum, Mark Wallace, Steven Howard
  • Publication number: 20080025444
    Abstract: An uplink channel response matrix is obtained for each terminal and decomposed to obtain a steering vector used by the terminal to transmit on the uplink. An “effective” uplink channel response vector is formed for each terminal based on its steering vector and its channel response matrix. Multiple sets of terminals are evaluated based on their effective channel response vectors to determine the best set (e.g., with highest overall throughput) for uplink transmission. Each selected terminal performs spatial processing on its data symbol stream with its steering vector and transmits its spatially processed data symbol stream to an access point. The multiple selected terminals simultaneously transmit their data symbol streams via their respective MIMO channels to the access point. The access point performs receiver spatial processing on its received symbol streams in accordance with a receiver spatial processing technique to recover the data symbol streams transmitted by the selected terminals.
    Type: Application
    Filed: October 9, 2007
    Publication date: January 31, 2008
    Applicant: QUALCOMM Incorporated
    Inventors: J. Walton, John Ketchum, John Smee, Mark Wallace, Steven Howard
  • Publication number: 20080025425
    Abstract: An uplink channel response matrix is obtained for each terminal and decomposed to obtain a steering vector used by the terminal to transmit on the uplink. An “effective” uplink channel response vector is formed for each terminal based on its steering vector and its channel response matrix. Multiple sets of terminals are evaluated based on their effective channel response vectors to determine the best set (e.g., with highest overall throughput) for uplink transmission. Each selected terminal performs spatial processing on its data symbol stream with its steering vector and transmits its spatially processed data symbol stream to an access point. The multiple selected terminals simultaneously transmit their data symbol streams via their respective MIMO channels to the access point. The access point performs receiver spatial processing on its received symbol streams in accordance with a receiver spatial processing technique to recover the data symbol streams transmitted by the selected terminals.
    Type: Application
    Filed: October 9, 2007
    Publication date: January 31, 2008
    Applicant: QUALCOMM INCORPORATED
    Inventors: J. Walton, John Ketchum, John Smee, Mark Wallace, Steven Howard
  • Publication number: 20080013638
    Abstract: Techniques to schedule downlink data transmission to a number of terminals in a wireless communication system. In one method, one or more sets of terminals are formed for possible data transmission, with each set including a unique combination of one or more terminals and corresponding to a hypothesis to be evaluated. One or more sub-hypotheses may further be formed for each hypothesis, with each sub-hypothesis corresponding to specific assignments of a number of transmit antennas to the one or more terminals in the hypothesis. The performance of each sub-hypothesis is then evaluated, and one of the evaluated sub-hypotheses is selected based on their performance. The terminal(s) in the selected sub-hypothesis are then scheduled for data transmission, and data is thereafter coded, modulated, and transmitted to each scheduled terminal from one or more transmit antennas assigned to the terminal.
    Type: Application
    Filed: June 21, 2007
    Publication date: January 17, 2008
    Applicant: QUALCOMM INCORPORATED
    Inventors: Jay Walton, Mark Wallace, Steven Howard
  • Publication number: 20080002794
    Abstract: Techniques for performing acquisition of packets are described. First detection values may be determined based on a first plurality of samples, e.g., by performing delay-multiply-integrate on the samples. Power values may be determined based on the first plurality of samples, e.g., by performing multiply-integrate on the samples. The first detection values may be averaged to obtain average detection values. The power values may also be averaged to obtain average power values. Whether a packet is presence may be determined based on the average detection values and the average power values. Second detection values may be determined based on a second plurality of samples. The start of the packet may be determined based on the first and second detection values. A third detection value may be determined based on a third plurality of samples. Frequency error of the packet may be estimated based on the first and third detection values.
    Type: Application
    Filed: May 18, 2007
    Publication date: January 3, 2008
    Applicant: QUALCOMM Incorporated
    Inventors: Mark Wallace, John Ketchum, J. Walton, Steven Howard
  • Patent number: 7309898
    Abstract: A method and apparatus for improving the latchup tolerance of circuits embedded in an integrated circuit while avoiding the introduction of noise from such tolerance into the power rails.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: December 18, 2007
    Assignee: International Business Machines Corporation
    Inventors: Raminderpal Singh, Steven Howard Voldman
  • Publication number: 20070268181
    Abstract: Techniques for efficiently deriving a transmit steering matrix and sending feedback for this matrix are described. A receiver determines a set of parameters defining a transmit steering matrix to be used for transmission from a transmitter to the receiver. The receiver may derive the transmit steering matrix based on a set of transformation matrices, which may be used for multiple iterations of Jacobi rotation to zero out off-diagonal elements of a channel matrix. The receiver may then determine the set of parameters based on the transformation matrices. The set of parameters may comprise at least one angle, at least one value, at least one index, etc., for each transformation matrix. The receiver sends the set of parameters defining the transmit steering matrix (instead of elements of the transmit steering matrix) to the transmitter for use by the transmitter to derive the transmit steering matrix.
    Type: Application
    Filed: May 17, 2007
    Publication date: November 22, 2007
    Applicant: QUALCOMM Incorporated
    Inventors: Steven Howard, John Ketchum, Mark Wallace, J. Walton
  • Publication number: 20070256606
    Abstract: An assembly includes a tray portion and a base. The base supports the tray portion. The tray portion may move within a substantially horizontal plane in an infinite number of directions. The base portion allows for the vertical movement of the tray. The assembly may also include a locking mechanism capable of preventing movement of the tray in the horizontal plane when desired.
    Type: Application
    Filed: May 2, 2006
    Publication date: November 8, 2007
    Inventors: Edward Ivey, James Capton, Jeffrey Phillips, Steven Howard
  • Publication number: 20070211814
    Abstract: For data transmission with spatial spreading, a transmitting entity (1) encodes and modulates each data packet to obtain a corresponding data symbol block, (2) multiplexes data symbol blocks onto NS data symbol streams for transmission on NS transmission channels of a MIMO channel, (3) spatially spreads the NS data symbol streams with steering matrices, and (4) spatially processes NS spread symbol streams for full-CSI transmission on NS eigenmodes or partial-CSI transmission on NS spatial channels of the MIMO channel. A receiving entity (1) obtains NR received symbol streams via NR receive antennas, (2) performs receiver spatial processing for full-CSI or partial-CSI transmission to obtain NS detected symbol streams, (3) spatially despreads the NS detected symbol streams with the same steering matrices used by the transmitting entity to obtain NS recovered symbol streams, and (4) demodulates and decodes each recovered symbol block to obtain a corresponding decoded data packet.
    Type: Application
    Filed: March 8, 2007
    Publication date: September 13, 2007
    Applicant: QUALCOMM INCORPORATED
    Inventors: Jay Walton, John Ketchum, Mark Wallace, Steven Howard
  • Publication number: 20070162827
    Abstract: Techniques for performing sphere detection to recover data symbols sent in a MIMO transmission are described. In an aspect, sphere detection is performed for data symbols generated with at least two modulation schemes. In another aspect, sphere detection is performed for the data symbols in an order determined based on at least one attribute of the data symbols, which may be error probabilities, modulation schemes, and/or link margins for the data symbols. In yet another aspect, rates for multiple data streams detected with sphere detection are selected based on channel state information. Signal qualities of the data streams may be estimated based on the channel state information, e.g., (1) an upper triangular matrix used for sphere detection and/or (2) an assumption that interference from data streams already detected is canceled. The rates for the data streams may be selected based on the estimated signal qualities.
    Type: Application
    Filed: February 6, 2006
    Publication date: July 12, 2007
    Inventors: Jay Walton, Mark Wallace, Steven Howard
  • Publication number: 20070135477
    Abstract: The invention provides compounds of the formula (1): The compounds have activity against cyclin depdenent kinases, glycogen synthase kinase and Auroa kinases and are therefore useful to treat cancer and viral diseases.
    Type: Application
    Filed: July 5, 2004
    Publication date: June 14, 2007
    Applicant: ASTEX Therapeuctics, Limited
    Inventors: Valerio Berdini, Michael O'Brien, Maria Carr, Theresa Early, Eva Navarro, Adrian Gill, Steven Howard, Gary Trewartha, Alison Woolford, Andrew Woodhead, Paul Wyatt
  • Publication number: 20070086536
    Abstract: Channel estimation and spatial processing for a TDD MIMO system. Calibration may be performed to account for differences in the responses of transmit/receive chains at the access point and user terminal. During normal operation, a MIMO pilot is transmitted on a first link and used to derive an estimate of the first link channel response, which is decomposed to obtain a diagonal matrix of singular values and a first unitary matrix containing both left eigenvectors of the first link and right eigenvectors of a second link. A steered reference is transmitted on the second link using the eigenvectors in the first unitary matrix, and is processed to obtain the diagonal matrix and a second unitary matrix containing both left eigenvectors of the second link and right eigenvectors of the first link. Each unitary matrix may be used to perform spatial processing for data transmission/reception via both links.
    Type: Application
    Filed: December 13, 2006
    Publication date: April 19, 2007
    Applicant: QUALCOMM, INCORPORATED
    Inventors: John Ketchum, Mark Wallace, J. Walton, Steven Howard
  • Publication number: 20070009059
    Abstract: Techniques for efficiently computing spatial filter matrices are described. The channel response matrices for a MIMO channel may be highly correlated if the channel is relatively static over a range of transmission spans. In this case, an initial spatial filter matrix may be derived based on one channel response matrix, and a spatial filter matrix for each transmission span may be computed based on the initial spatial filter matrix and a steering matrix used for that transmission span. The channel response matrices may be partially correlated if the MIMO channel is not static but does not change abruptly. In this case, a spatial filter matrix may be derived for one transmission span l and used to derive an initial spatial filter matrix for another transmission span m. A spatial filter matrix for transmission span m may be computed based on the initial spatial filter matrix, e.g., using an iterative procedure.
    Type: Application
    Filed: September 12, 2006
    Publication date: January 11, 2007
    Inventors: Mark Wallace, Jay Walton, Steven Howard
  • Patent number: 7154734
    Abstract: A linear capacitor design providing shielding on all sides of the linear capacitor. In one aspect the capacitor provides a signal side metal layer substantially enclosed by a dielectric material which is, in turn, substantially enclosed by an upper and lower metal shield layer. in another aspect, the upper and lower shield metal layers may be coupled by a plurality of vias. In another aspect, a plurality of alternating intermediate layers provide signal side metal and shield metal separated by dielectric material such that each signal side layer is substantially enclosed by one or more shield metal layers. In another aspect, multiple intermediate signal side metal layers are conductively coupled to one another by a plurality of vias and multiple shield metal layers are conductively coupled to one another by a plurality of vias.
    Type: Grant
    Filed: September 20, 2004
    Date of Patent: December 26, 2006
    Assignee: LSI Logic Corporation
    Inventors: Richard Schultz, Jeffrey Burleson, Steven Howard
  • Publication number: 20060285531
    Abstract: Techniques to efficiently derive a spatial filter matrix are described. In a first scheme, a Hermitian matrix is iteratively derived based on a channel response matrix, and a matrix inversion is indirectly calculated by deriving the Hermitian matrix iteratively. The spatial filter matrix is derived based on the Hermitian matrix and the channel response matrix. In a second scheme, multiple rotations are performed to iteratively obtain first and second matrices for a pseudo-inverse matrix of the channel response matrix. The spatial filter matrix is derived based on the first and second matrices. In a third scheme, a matrix is formed based on the channel response matrix and decomposed to obtain a unitary matrix and a diagonal matrix. The spatial filter matrix is derived based on the unitary matrix, the diagonal matrix, and the channel response matrix.
    Type: Application
    Filed: June 21, 2005
    Publication date: December 21, 2006
    Inventors: Steven Howard, John Ketchum, Mark Wallace, Peter Monsen, Jay Walton
  • Publication number: 20060274638
    Abstract: In one aspect of a multiple-access OFDM-CDMA system, the data spreading is performed in the frequency domain by spreading each data stream with a respective spreading code selected from a set of available spreading codes. To support multiple access, system resources may be allocated and de-allocated to users (e.g., spreading codes may be assigned to users as needed, and transmit power may be allocated to users). Variable rate data for each user may be supported via a combination of spreading adjustment and transmit power scaling. Interference control techniques are also provided to improve system performance via power control of the downlink and/or uplink transmissions to achieve the desired level of performance while minimizing interference. A pilot may be transmitted by each transmitter unit to assist the receiver units perform acquisition, timing synchronization, carrier recovery, handoff, channel estimation, coherent data demodulation, and so on.
    Type: Application
    Filed: July 26, 2006
    Publication date: December 7, 2006
    Inventors: Jay Walton, John Ketchum, Steven Howard, Mark Wallace
  • Publication number: 20060274849
    Abstract: Techniques for processing a data transmission at the transmitter and receiver. In an aspect, a time-domain implementation is provided which uses frequency-domain singular value decomposition and “water-pouring” results to derive time-domain pulse-shaping and beam-steering solutions at the transmitter and receiver. The singular value decomposition is performed at the transmitter to determine eigen-modes (i.e., spatial subchannels) of the MIMO channel and to derive a first set of steering vectors used to “precondition” modulation symbols. The singular value decomposition is also performed at the receiver to derive a second set of steering vectors used to precondition the received signals such that orthogonal symbol streams are recovered at the receiver, which can simplify the receiver processing. Water-pouring analysis is used to more optimally allocate the total available transmit power to the eigen-modes, which then determines the data rate and the coding and modulation scheme to be used for each eigen-mode.
    Type: Application
    Filed: August 7, 2006
    Publication date: December 7, 2006
    Inventors: John Ketchum, Mark Wallace, Steven Howard, Jay Walton
  • Publication number: 20060274844
    Abstract: Frequency-independent eigensteering in MISO and MIMO systems are described. For principal mode and multi-mode eigensteering, a correlation matrix is computed for a MIMO channel based on channel response matrices and decomposed to obtain NS frequency-independent steering vectors for NS spatial channels of the MIMO channel. ND data symbol streams are transmitted on ND best spatial channels using ND steering vectors, where ND=1 for principal mode eigensteering and ND>1 for multi-mode eigensteering. For main path eigensteering, a data symbol stream is transmitted on the best spatial channel for the main propagation path (e.g., with the highest energy) of the MIMO channel. For receiver eigensteering, a data symbol stream is steered toward a receive antenna based on a steering vector obtained for that receive antenna. For all eigensteering schemes, a matched filter is derived for each receive antenna based on the steering vector(s) and channel response vectors for the receive antenna.
    Type: Application
    Filed: June 19, 2006
    Publication date: December 7, 2006
    Inventors: J. Walton, John Ketchum, Mark Wallace, Steven Howard