Patents by Inventor Steven J. Bentley

Steven J. Bentley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9530863
    Abstract: One illustrative method disclosed herein includes, among other things, forming a vertically oriented channel semiconductor structure, forming a layer of a bottom spacer material around the vertically oriented channel semiconductor structure and forming a sacrificial material layer above the layer of a bottom spacer material. In this example, the method further includes forming a sidewall spacer adjacent the vertically oriented channel semiconductor structure and above an upper surface of the sacrificial material layer, removing the sacrificial material layer so as to define a replacement gate cavity between a bottom surface of the sidewall spacer and the layer of a bottom spacer material, and forming a replacement gate structure in the replacement gate cavity.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: December 27, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: John H. Zhang, Carl Radens, Steven J. Bentley, Brian A. Cohen, Kwan-Yong Lim
  • Patent number: 9530866
    Abstract: Forming a first sidewall spacer adjacent a vertically oriented channel semiconductor structure (“VCS structure’) and adjacent a cap layer, performing at least one planarization process so as to planarize an insulating material and expose an upper surface of the cap layer and an upper surface of the first spacer and removing a portion of the first spacer and an entirety of the cap layer so as to thereby expose an upper surface of the VCS structure and define a spacer/contact cavity above the VCS structure and the first spacer. The method also includes forming a second spacer in the spacer/contact cavity, forming a top source/drain region in the VCS structure and forming a top source/drain contact within the spacer/contact cavity that is conductively coupled to the top source/drain region, wherein the conductive contact physically contacts the second spacer in the spacer/contact cavity.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: December 27, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: John H. Zhang, Carl Radens, Steven J. Bentley, Brian A. Cohen, Kwan-Yong Lim
  • Publication number: 20160254361
    Abstract: Embodiments of the present invention provide transistors with controlled junctions and methods of fabrication. A dummy spacer is used during the majority of front end of line (FEOL) processing. Towards the end of the FEOL processing, the dummy spacers are removed and replaced with a final spacer material. Embodiments of the present invention allow the use of a very low-k material, which is highly thermally-sensitive, by depositing it late in the flow. Additionally, the position of the gate with respect to the doped regions is highly controllable, while dopant diffusion is minimized through reduced thermal budgets. This allows the creation of extremely abrupt junctions whose surface position is defined using a sacrificial spacer. This spacer is then removed prior to final gate deposition, allowing a fixed gate overlap that is defined by the spacer thickness and any diffusion of the dopant species.
    Type: Application
    Filed: May 13, 2016
    Publication date: September 1, 2016
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Steven J. Bentley, Ajey Poovannummoottil Jacob, Chia-Yu Chen, Tenko Yamashita
  • Patent number: 9368591
    Abstract: Embodiments of the present invention provide transistors with controlled junctions and methods of fabrication. A dummy spacer is used during the majority of front end of line (FEOL) processing. Towards the end of the FEOL processing, the dummy spacers are removed and replaced with a final spacer material. Embodiments of the present invention allow the use of a very low-k material, which is highly thermally-sensitive, by depositing it late in the flow. Additionally, the position of the gate with respect to the doped regions is highly controllable, while dopant diffusion is minimized through reduced thermal budgets. This allows the creation of extremely abrupt junctions whose surface position is defined using a sacrificial spacer. This spacer is then removed prior to final gate deposition, allowing a fixed gate overlap that is defined by the spacer thickness and any diffusion of the dopant species.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: June 14, 2016
    Assignee: GlobalFoundries Inc.
    Inventors: Steven J. Bentley, Ajey Poovannummoottil Jacob, Chia-Yu Chen, Tenko Yamashita
  • Publication number: 20160020335
    Abstract: Embodiments of the present invention provide transistors with controlled junctions and methods of fabrication. A dummy spacer is used during the majority of front end of line (FEOL) processing. Towards the end of the FEOL processing, the dummy spacers are removed and replaced with a final spacer material. Embodiments of the present invention allow the use of a very low-k material, which is highly thermally-sensitive, by depositing it late in the flow. Additionally, the position of the gate with respect to the doped regions is highly controllable, while dopant diffusion is minimized through reduced thermal budgets. This allows the creation of extremely abrupt junctions whose surface position is defined using a sacrificial spacer. This spacer is then removed prior to final gate deposition, allowing a fixed gate overlap that is defined by the spacer thickness and any diffusion of the dopant species.
    Type: Application
    Filed: July 18, 2014
    Publication date: January 21, 2016
    Inventors: Steven J. Bentley, Ajey Poovannummoottil Jacob, Chia-Yu Chen, Tenko Yamashita
  • Publication number: 20150380514
    Abstract: Approaches for providing junction overlap control in a semiconductor device are provided. Specifically, at least one approach includes: providing a gate over a substrate; forming a set of junction extensions in a channel region adjacent the gate; forming a set of spacer layers along each of a set of sidewalls of the gate; removing the gate between the set of spacer layers to form an opening; removing, from within the opening, an exposed sacrificial spacer layer of the set of spacer layers, the exposed sacrificial spacer layer defining a junction extension overlap linear distance from the set of sidewalls of the gate; and forming a replacement gate electrode within the opening. This results in a highly scaled advanced transistor having precisely defined junction profiles and well-controlled gate overlap geometry achieved using extremely abrupt junctions whose surface position is defined using the set of spacer layers.
    Type: Application
    Filed: June 25, 2014
    Publication date: December 31, 2015
    Inventors: Steven J. Bentley, Michael J. Hargrove, Chia-Yu Chen, Ryan O. Jung, Sivanandha K. Kanakasabapathy, Tenko Yamashita
  • Patent number: 8963259
    Abstract: Embodiments herein provide approaches for device isolation in a complimentary metal-oxide fin field effect transistor. Specifically, a semiconductor device is formed with a retrograde doped layer over a substrate to minimize a source to drain punch-through leakage. A set of replacement fins is formed over the retrograde doped layer, each of the set of replacement fins comprising a high mobility channel material (e.g., silicon, or silicon-germanium). The retrograde doped layer may be formed using an in situ doping process or a counter dopant retrograde implant. The device may further include a carbon liner positioned between the retrograde doped layer and the set of replacement fins to prevent carrier spill-out to the replacement fins.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: February 24, 2015
    Assignees: GlobalFoundries Inc., International Business Machines Corporation, Renesas Electronics Corporation
    Inventors: Ajey P. Jacob, Murat K. Akarvardar, Steven J. Bentley, Toshiharu Nagumo, Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz
  • Publication number: 20140353801
    Abstract: Embodiments herein provide approaches for device isolation in a complimentary metal-oxide fin field effect transistor. Specifically, a semiconductor device is formed with a retrograde doped layer over a substrate to minimize a source to drain punch-through leakage. A set of replacement fins is formed over the retrograde doped layer, each of the set of replacement fins comprising a high mobility channel material (e.g., silicon, or silicon-germanium). The retrograde doped layer may be formed using an in situ doping process or a counter dopant retrograde implant. The device may further include a carbon liner positioned between the retrograde doped layer and the set of replacement fins to prevent carrier spill-out to the replacement fins.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Inventors: Ajey P. Jacob, Murat K. Akarvardar, Steven J. Bentley, Toshiharu Nagumo, Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz