Patents by Inventor Steven J. Craigen

Steven J. Craigen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11318581
    Abstract: Fluid jet cutting systems, components and related methods for generating relatively low load abrasive fluid jets that are particularly well suited for cutting fragile, brittle or otherwise sensitive materials are provided. An example method includes supplying fluid at an operating pressure of at least 60,000 psi to an orifice having a circular cross-sectional profile with a diameter that is less than or equal to 0.010 inches to create a fluid jet that leaves a fluid jet cutting head through a jet passageway having a circular cross-sectional profile with a diameter that is less than or equal to 0.015 inches.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: May 3, 2022
    Assignee: Flow International Corporation
    Inventors: Steven J. Craigen, Mohamed A. Hashish
  • Patent number: 11292147
    Abstract: Methods of trimming fiber reinforced polymer composite workpieces are provided which use a pure waterjet discharged from a cutting head in liquid phase unladened with solid particles at an operating pressure of at least 60,000 psi and in combination with other cutting parameters to provide a final component profile without delamination, splintering, fraying or unacceptable fiber pullout or fiber fracture.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: April 5, 2022
    Assignee: Flow International Corporation
    Inventors: Mohamed A. Hashish, Charles D. Burnham, Steven J. Craigen
  • Patent number: 11260503
    Abstract: An abrasive slurry delivery system configured to discharge a high pressure mixture of water (30) and abrasives (54, 54?) for further admixture with a flow of high pressure water (30) to generate an abrasive slurry and ultimately an abrasive slurry jet is provided. The delivery system includes a storage chamber (56), a discharge chamber (58) and a shuttle chamber (60) positioned therebetween. The shuttle chamber (60) is configured to intermittently receive abrasives (54) from the storage chamber (56) and intermittently supply the abrasives (54, 54?) mixed with high pressure water (30) to the discharge chamber (58) to be selectively discharged therefrom. High pressure abrasive slurry cutting systems and related methods are also provided.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: March 1, 2022
    Assignee: Flow International Corporation
    Inventors: Mohamed A. Hashish, Robert Niblock, Steven J. Craigen, Bruce M. Schuman
  • Patent number: 11045969
    Abstract: A catcher tank assembly is provided for a waterjet cutting machine. The catcher tank assembly includes a catcher tank having a plurality of tank sections detachably coupleable together in a side-by-side manner to collectively define a catcher tank having a desired configuration. The catcher tank assembly further includes a workpiece support system detachably coupleable to an interior cavity of the catcher tank. The workpiece support system may include a plurality of workpiece support modules arrangeable in an array to support a workpiece platform of the waterjet cutting machine. The workpiece platform may be formed, for example, by a series of slats supported transversely to parallel rows of the workpiece support modules. Methods and systems which relate to or include the aforementioned catcher tank assembly are also provided.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: June 29, 2021
    Assignee: Flow International Corporation
    Inventors: Michael Knaupp, Andreas Meyer, Steven J. Craigen, Robert J. Mann, Mohamed A. Hashish, Eckhardt R. Ullrich, Thomas R. Loofbourow
  • Patent number: 10744620
    Abstract: Air flow management systems and methods to facilitate the delivery of abrasives to an abrasive fluid jet cutting head are provided which enable the makeup of the discharged abrasive fluid jet to be controlled or manipulated in a particularly advantageous manner. The methods may include continuously or periodically measuring a volumetric flow rate of air (or other abrasive material carrier fluid) moving through an abrasive feed passageway at one or more measurement locations and adjusting the volumetric flow rate of air (or other abrasive material carrier fluid) moving through the abrasive feed passageway based at least in part on said measuring. Systems and methods for diagnosing changes in operational conditions and/or changes in the condition of one or more components of an abrasive fluid jet cutting system are also provided.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: August 18, 2020
    Assignee: Shape Technologies Group, Inc.
    Inventors: Pradeep Nambiath, Mohamed A. Hashish, Alex M. Chillman, Steven J. Craigen
  • Publication number: 20200215712
    Abstract: Methods of trimming fiber reinforced polymer composite workpieces are provided which use a pure waterjet discharged from a cutting head in liquid phase unladened with solid particles at an operating pressure of at least 60,000 psi and in combination with other cutting parameters to provide a final component profile without delamination, splintering, fraying or unacceptable fiber pullout or fiber fracture.
    Type: Application
    Filed: March 20, 2020
    Publication date: July 9, 2020
    Inventors: Mohamed A. Hashish, Charles D. Burnham, Steven J. Craigen
  • Patent number: 10596717
    Abstract: Methods of trimming fiber reinforced polymer composite workpieces are provided which use a pure waterjet discharged from a cutting head in liquid phase unladened with solid particles at an operating pressure of at least 60,000 psi and in combination with other cutting parameters to provide a final component profile without delamination, splintering, fraying or unacceptable fiber pullout or fiber fracture.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: March 24, 2020
    Assignee: Flow International Corporation
    Inventors: Mohamed A. Hashish, Charles D. Burnham, Steven J. Craigen
  • Patent number: 10589400
    Abstract: A waterjet cutting method is provided which includes directing a waterjet onto a surface of a workpiece that is exposed to the surrounding atmosphere, the interaction of the waterjet with the exposed surface defining a cutting location, and simultaneously directing a gas stream onto the exposed surface of the workpiece at or adjacent the cutting location to maintain a cutting environment at the cutting location that is, apart from the waterjet, substantially devoid of fluid or particulate matter. The method may further include moving a source of the waterjet relative to the workpiece to cut the workpiece along a desired path while continuously directing the gas stream onto the exposed surface of the workpiece at or adjacent the cutting location.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: March 17, 2020
    Assignee: Flow International Corporation
    Inventors: Mohamed A. Hashish, Steven J. Craigen, Bruce M. Schuman
  • Patent number: 10493650
    Abstract: Fluid jet systems, components and related methods are provided which are well adapted for processing workpieces under particularly work-friendly conditions. Embodiments include fluid jet systems and related methods that reduce, minimize or eliminate a gap between a workpiece being processed and jet receiving devices that receive and dissipate the energy of a fluid jet passing through the workpiece. Other embodiments include fluid jet systems and related methods involving fluid jet processing of workpieces in a submerged condition. Still further embodiments include fluid jet systems and related methods involving position and orientation adjustment of a fluid jet receptacle to coordinate the path of an incoming fluid jet with a central axis or other feature of the fluid jet receptacle.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: December 3, 2019
    Assignee: Flow International Corporation
    Inventors: Mohamed A. Hashish, Alex M. Chillman, Charles M. Brown, Steven J. Craigen
  • Publication number: 20190358775
    Abstract: Fluid jet cutting systems, components and related methods for generating relatively low load abrasive fluid jets that are particularly well suited for cutting fragile, brittle or otherwise sensitive materials are provided. An example method includes supplying fluid at an operating pressure of at least 60,000 psi to an orifice having a circular cross-sectional profile with a diameter that is less than or equal to 0.010 inches to create a fluid jet that leaves a fluid jet cutting head through a jet passageway having a circular cross-sectional profile with a diameter that is less than or equal to 0.015 inches.
    Type: Application
    Filed: May 25, 2018
    Publication date: November 28, 2019
    Inventors: Steven J. Craigen, Mohamed A. Hashish
  • Publication number: 20190084125
    Abstract: Air flow management systems and methods to facilitate the delivery of abrasives to an abrasive fluid jet cutting head are provided which enable the makeup of the discharged abrasive fluid jet to be controlled or manipulated in a particularly advantageous manner. The methods may include continuously or periodically measuring a volumetric flow rate of air (or other abrasive material carrier fluid) moving through an abrasive feed passageway at one or more measurement locations and adjusting the volumetric flow rate of air (or other abrasive material carrier fluid) moving through the abrasive feed passageway based at least in part on said measuring. Systems and methods for diagnosing changes in operational conditions and/or changes in the condition of one or more components of an abrasive fluid jet cutting system are also provided.
    Type: Application
    Filed: September 21, 2017
    Publication date: March 21, 2019
    Inventors: Pradeep Nambiath, Mohamed A. Hashish, Alex M. Chillman, Steven J. Craigen
  • Publication number: 20180099378
    Abstract: A waterjet cutting method is provided which includes directing a waterjet onto a surface of a workpiece that is exposed to the surrounding atmosphere, the interaction of the waterjet with the exposed surface defining a cutting location, and simultaneously directing a gas stream onto the exposed surface of the workpiece at or adjacent the cutting location to maintain a cutting environment at the cutting location that is, apart from the waterjet, substantially devoid of fluid or particulate matter. The method may further include moving a source of the waterjet relative to the workpiece to cut the workpiece along a desired path while continuously directing the gas stream onto the exposed surface of the workpiece at or adjacent the cutting location.
    Type: Application
    Filed: December 8, 2017
    Publication date: April 12, 2018
    Inventors: Mohamed A. Hashish, Steven J. Craigen, Bruce M. Schuman
  • Patent number: 9884406
    Abstract: A waterjet cutting head assembly is provided which includes an orifice unit to generate a high-pressure waterjet, a nozzle body and a nozzle component coupled to the nozzle body with the orifice unit positioned therebetween. The nozzle component may include a waterjet passage, at least one jet alteration passage and at least one environment control passage. The jet alteration passage may intersect with the waterjet passage to enable selective alteration of the waterjet during operation via the introduction of a secondary fluid or application of a vacuum. The environment control passage may include one or more downstream portions aligned relative to the fluid jet passage so that gas passed through the environment control passage during operation is directed to impinge on an exposed surface of a workpiece at or adjacent to a location where the waterjet is cutting the workpiece. Other high-pressure waterjet cutting systems, components and related methods are also provided.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: February 6, 2018
    Assignee: FLOW INTERNATIONAL CORPORATION
    Inventors: Mohamed A. Hashish, Steven J. Craigen, Bruce M. Schuman
  • Patent number: 9844890
    Abstract: High-pressure fluid jet systems are provided which include a pump to selectively provide a source of high-pressure fluid, a cutting head assembly configured to receive the high-pressure fluid and generate a high-pressure fluid jet for processing workpieces or work surfaces, and a fluid distribution system in fluid communication with the pump and the cutting head assembly to route the high-pressure fluid from the pump to the cutting head assembly. The pump, the cutting head assembly and/or the fluid distribution system include at least one fluid distribution component having a unitary body formed from an additive manufacturing or casting process with an internal passage having at least a curvilinear portion to efficiently route matter through the fluid jet system. Example fluid distribution components include fittings, valve bodies, cutting head bodies and nozzles of the high-pressure fluid jet systems.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: December 19, 2017
    Assignee: Flow International Corporation
    Inventors: Mohamed Hashish, Robert Niblock, Steven J. Craigen, Bruce M. Schuman, Shawn Michael Callahan, Paul Tacheron, Sean Schramm
  • Publication number: 20170136650
    Abstract: Fluid jet systems, components and related methods are provided which are well adapted for processing workpieces under particularly work-friendly conditions. Embodiments include fluid jet systems and related methods that reduce, minimize or eliminate a gap between a workpiece being processed and jet receiving devices that receive and dissipate the energy of a fluid jet passing through the workpiece. Other embodiments include fluid jet systems and related methods involving fluid jet processing of workpieces in a submerged condition. Still further embodiments include fluid jet systems and related methods involving position and orientation adjustment of a fluid jet receptacle to coordinate the path of an incoming fluid jet with a central axis or other feature of the fluid jet receptacle.
    Type: Application
    Filed: January 30, 2017
    Publication date: May 18, 2017
    Inventors: Mohamed A. Hashish, Alex M. Chillman, Charles M. Brown, Steven J. Craigen
  • Patent number: 9573289
    Abstract: Fluid jet systems, components and related methods are provided which are well adapted for processing workpieces under particularly work-friendly conditions. Embodiments include fluid jet systems and related methods that reduce, minimize or eliminate a gap between a workpiece being processed and jet receiving devices that receive and dissipate the energy of a fluid jet passing through the workpiece. Other embodiments include fluid jet systems and related methods involving fluid jet processing of workpieces in a submerged condition. Still further embodiments include fluid jet systems and related methods involving position and orientation adjustment of a fluid jet receptacle to coordinate the path of an incoming fluid jet with a central axis or other feature of the fluid jet receptacle.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: February 21, 2017
    Assignee: Flow International Corporation
    Inventors: Mohamed A. Hashish, Alex M. Chillman, Charles M. Brown, Steven J. Craigen
  • Publication number: 20170015018
    Abstract: Methods of trimming fiber reinforced polymer composite workpieces are provided which use a pure waterjet discharged from a cutting head in liquid phase unladened with solid particles at an operating pressure of at least 60,000 psi and in combination with other cutting parameters to provide a final component profile without delamination, splintering, fraying or unacceptable fiber pullout or fiber fracture.
    Type: Application
    Filed: July 13, 2015
    Publication date: January 19, 2017
    Inventors: Mohamed A. Hashish, Charles D. Burnham, Steven J. Craigen
  • Publication number: 20160339560
    Abstract: An abrasive slurry delivery system configured to discharge a high pressure mixture of water (30) and abrasives (54, 54?) for further admixture with a flow of high pressure water (30) to generate an abrasive slurry and ultimately an abrasive slurry jet is provided. The delivery system includes a storage chamber (56), a discharge chamber (58) and a shuttle chamber (60) positioned therebetween. The shuttle chamber (60) is configured to intermittently receive abrasives (54) from the storage chamber (56) and intermittently supply the abrasives (54, 54?) mixed with high pressure water (30) to the discharge chamber (58) to be selectively discharged therefrom. High pressure abrasive slurry cutting systems and related methods are also provided.
    Type: Application
    Filed: October 31, 2014
    Publication date: November 24, 2016
    Inventors: Mohamed A. Hashish, Robert Niblock, Steven J. Craigen, Bruce M. Schuman
  • Publication number: 20160214231
    Abstract: High-pressure fluid jet systems are provided which include a pump to selectively provide a source of high-pressure fluid, a cutting head assembly configured to receive the high-pressure fluid and generate a high-pressure fluid jet for processing workpieces or work surfaces, and a fluid distribution system in fluid communication with the pump and the cutting head assembly to route the high-pressure fluid from the pump to the cutting head assembly. The pump, the cutting head assembly and/or the fluid distribution system include at least one fluid distribution component having a unitary body formed from an additive manufacturing or casting process with an internal passage having at least a curvilinear portion to efficiently route matter through the fluid jet system. Example fluid distribution components include fittings, valve bodies, cutting head bodies and nozzles of the high-pressure fluid jet systems.
    Type: Application
    Filed: January 25, 2016
    Publication date: July 28, 2016
    Inventors: Mohamed Hashish, Robert Niblock, Steven J. Craigen, Bruce M. Schuman, Shawn Michael Callahan, Paul Tacheron, Sean Schramm
  • Patent number: 9370871
    Abstract: Fluid jet systems, components and related methods are provided which are well adapted for processing workpieces under particularly work-friendly conditions. Embodiments include fluid jet systems and related methods that reduce, minimize or eliminate a gap between a workpiece being processed and jet receiving devices that receive and dissipate the energy of a fluid jet passing through the workpiece. Other embodiments include fluid jet systems and related methods involving fluid jet processing of workpieces in a submerged condition. Still further embodiments include fluid jet systems and related methods involving position and orientation adjustment of a fluid jet receptacle to coordinate the path of an incoming fluid jet with a central axis or other feature of the fluid jet receptacle.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: June 21, 2016
    Assignee: Flow International Corporation
    Inventors: Mohamed A. Hashish, Alex M. Chillman, Charles M. Brown, Steven J. Craigen