Patents by Inventor Steven J. Craigen

Steven J. Craigen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6981906
    Abstract: A method for milling grooves in a work-piece includes using a manipulator to control impingement angles of abrasive fluidjets traversed across the work-piece. Another method employs multiple fluidjets simultaneously with a plurality of impingement angles. An apparatus is also provided to allow for the simultaneous use of multiple abrasive fluidjets with a plurality of impingement angles.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: January 3, 2006
    Assignees: Flow International Corporation, The C. A. Lawton Co.
    Inventors: Mohamed A. Hashish, Steven J. Craigen, Timothy J. Ennis, Thomas E. Nettekoven, Michael W. Van Laanen
  • Patent number: 6945859
    Abstract: A method and apparatus for controlling the coherence of a high-pressure fluid jet directed toward a selected surface. In one embodiment, the coherence is controlled by manipulating a turbulence level of the fluid forming the fluid jet. The turbulence level can be manipulated upstream or downstream of a nozzle orifice through which the fluid passes. For example, in one embodiment, the fluid is a first fluid and a secondary fluid is entrained with the first fluid. The resulting fluid jet, which includes both the primary and secondary fluids, can be directed toward the selected surface so as to cut, mill, roughen, peen, or otherwise treat the selected surface. The characteristics of the secondary fluid can be selected to either increase or decrease the coherence of the fluid jet. In other embodiments, turbulence generators, such as inverted conical channels, upstream orifices, protrusions and other devices can be positioned upstream of the nozzle orifice to control the coherence of the resulting fluid jet.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: September 20, 2005
    Assignee: Flow International Corporation
    Inventors: Mohamed A. Hashish, Steven J. Craigen, Felice M. Sciulli, Yasuo Baba
  • Patent number: 6875084
    Abstract: A method and apparatus for controlling the coherence of a high-pressure fluid jet directed toward a selected surface. In one embodiment, the coherence is controlled by manipulating a turbulence level of the fluid forming the fluid jet. The turbulence level can be manipulated upstream or downstream of a nozzle orifice through which the fluid passes. For example, in one embodiment, the fluid is a first fluid and a secondary fluid is entrained with the first fluid. The resulting fluid jet, which includes both the primary and secondary fluids, can be directed toward the selected surface so as to cut, mill, roughen, peen, or otherwise treat the selected surface. The characteristics of the secondary fluid can be selected to either increase or decrease the coherence of the fluid jet. In other embodiments, turbulence generators, such as inverted conical channels, upstream orifices, protrusions and other devices can be positioned upstream of the nozzle orifice to control the coherence of the resulting fluid jet.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: April 5, 2005
    Assignee: Flow International Corporation
    Inventors: Mohamed A. Hashish, Steven J. Craigen, Felice M. Sciulli, Yasuo Baba
  • Patent number: 6851627
    Abstract: A high-pressure fluidjet nozzle is formed from a plurality of segments joined together, for example, by a metal sleeve. Axial bores provided in the segments align to form an axial bore extending through the nozzle. The number, material, and outer and inner dimensions of the segments can be varied to provide a nozzle with desired performance characteristics. Spaces can be provided between the segments to form chambers with auxiliary ports connected to the chambers to allow monitoring and modulation of the jet.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: February 8, 2005
    Assignee: Flow International Corporation
    Inventors: Mohamed A. Hashish, Steven J. Craigen
  • Publication number: 20040259478
    Abstract: A method for milling grooves in a work-piece includes using a manipulator to control impingement angles of abrasive fluidjets traversed across the work-piece. Another method employs multiple fluidjets simultaneously with a plurality of impingement angles. An apparatus is also provided to allow for the simultaneous use of multiple abrasive fluidjets with a plurality of impingement angles.
    Type: Application
    Filed: June 23, 2003
    Publication date: December 23, 2004
    Applicants: Flow International Corporation, The C. A. Lawton Co.
    Inventors: Mohamed A. Hashish, Steven J. Craigen, Timothy J. Ennis, Thomas E. Nettekoven, Michael W. Van Laanen
  • Publication number: 20040235395
    Abstract: A method and apparatus for controlling the coherence of a high-pressure fluid jet directed toward a selected surface. In one embodiment, the coherence is controlled by manipulating a turbulence level of the fluid forming the fluid jet. The turbulence level can be manipulated upstream or downstream of a nozzle orifice through which the fluid passes. For example, in one embodiment, the fluid is a first fluid and a secondary fluid is entrained with the first fluid. The resulting fluid jet, which includes both the primary and secondary fluids, can be directed toward the selected surface so as to cut, mill, roughen, peen, or otherwise treat the selected surface. The characteristics of the secondary fluid can be selected to either increase or decrease the coherence of the fluid jet. In other embodiments, turbulence generators, such as inverted conical channels, upstream orifices, protrusions and other devices can be positioned upstream of the nozzle orifice to control the coherence of the resulting fluid jet.
    Type: Application
    Filed: June 28, 2004
    Publication date: November 25, 2004
    Applicant: Flow International Corporation
    Inventors: Mohamed A. Hashish, Steven J. Craigen, Felice M. Sciulli, Yasuo Baba
  • Publication number: 20040235389
    Abstract: A method and apparatus for controlling the coherence of a high-pressure fluid jet directed toward a selected surface. In one embodiment, the coherence is controlled by manipulating a turbulence level of the fluid forming the fluid jet. The turbulence level can be manipulated upstream or downstream of a nozzle orifice through which the fluid passes. For example, in one embodiment, the fluid is a first fluid and a secondary fluid is entrained with the first fluid. The resulting fluid jet, which includes both the primary and secondary fluids, can be directed toward the selected surface so as to cut, mill, roughen, peen, or otherwise treat the selected surface. The characteristics of the secondary fluid can be selected to either increase or decrease the coherence of the fluid jet. In other embodiments, turbulence generators, such as inverted conical channels, upstream orifices, protrusions and other devices can be positioned upstream of the nozzle orifice to control the coherence of the resulting fluid jet.
    Type: Application
    Filed: June 21, 2004
    Publication date: November 25, 2004
    Applicant: Flow International Corporation
    Inventors: Mohamed A. Hashish, Steven J. Craigen, Felice M. Sciulli, Yasuo Baba
  • Patent number: 6755725
    Abstract: A method and apparatus for controlling the coherence of a high-pressure fluid jet directed toward a selected surface. In one embodiment, the coherence is controlled by manipulating a turbulence level of the fluid forming the fluid jet. The turbulence level can be manipulated upstream or downstream of a nozzle orifice through which the fluid passes. For example, in one embodiment, the fluid is a first fluid and a secondary fluid is entrained with the first fluid. The resulting fluid jet, which includes both the primary and secondary fluids, can be directed toward the selected surface so as to cut, mill, roughen, peen, or otherwise treat the selected surface. The characteristics of the secondary fluid can be selected to either increase or decrease the coherence of the fluid jet. In other embodiments, turbulence generators, such as inverted conical channels, upstream orifices, protrusions and other devices can be positioned upstream of the nozzle orifice to control the coherence of the resulting fluid jet.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: June 29, 2004
    Assignee: Flow International Corporation
    Inventors: Mohamed A. Hashish, Steven J. Craigen, Felice M. Sciulli, Yasuo Baba
  • Patent number: 6752686
    Abstract: A method and apparatus for controlling the coherence of a high-pressure fluid jet directed toward a selected surface. In one embodiment, the coherence is controlled by manipulating a turbulence level of the fluid forming the fluid jet. The turbulence level can be manipulated upstream or downstream of a nozzle orifice through which the fluid passes. For example, in one embodiment, the fluid is a first fluid and a secondary fluid is entrained with the first fluid. The resulting fluid jet, which includes both the primary and secondary fluids, can be directed toward the selected surface so as to cut, mill, roughen, peen, or otherwise treat the selected surface. The characteristics of the secondary fluid can be selected to either increase or decrease the coherence of the fluid jet. In other embodiments, turbulence generators, such as inverted conical channels, upstream orifices, protrusions and other devices can be positioned upstream of the nozzle orifice to control the coherence of the resulting fluid jet.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: June 22, 2004
    Assignee: Flow International Corporation
    Inventors: Mohamed A. Hashish, Steven J. Craigen, Felice M. Sciulli, Yasuo Baba
  • Publication number: 20040107810
    Abstract: An improved apparatus for generating a high-pressure fluid jet includes an orifice mount having a frusto-conical surface that engages a frusto-conical wall in a cutting head, the geometry of the orifice mount and cutting head being selected to increase the stability of the mount and reduce deflection of the mount adjacent a jewel orifice, when subjected to pressure. Alignment of a nozzle body and the cutting head is improved by providing pilot diameters both upstream and downstream of threads on the nozzle body and bore of the cutting head, respectively. Accurate placement of a mixing tube in a cutting head is achieved by rigidly fixing a collar to an outer surface of the mixing tube, the collar engaging a shoulder and bore of the cutting head downstream of a mixing chamber, to precisely locate the mixing chamber axially and radially.
    Type: Application
    Filed: November 20, 2003
    Publication date: June 10, 2004
    Applicant: Flow International Corporation
    Inventors: Felix M. Sciulli, Mohamed A. Hashish, Steven J. Craigen, Bruce M. Schuman
  • Publication number: 20030037654
    Abstract: An improved apparatus for generating a high-pressure fluid jet includes an orifice mount having a frusto-conical surface that engages a frusto-conical wall in a cutting head, the geometry of the orifice mount and cutting head being selected to increase the stability of the mount and reduce deflection of the mount adjacent a jewel orifice, when subjected to pressure. Alignment of a nozzle body and the cutting head is improved by providing pilot diameters both upstream and downstream of threads on the nozzle body and bore of the cutting head, respectively. Accurate placement of a mixing tube in a cutting head is achieved by rigidly fixing a collar to an outer surface of the mixing tube, the collar engaging a shoulder and bore of the cutting head downstream of a mixing chamber, to precisely locate the mixing chamber axially and radially.
    Type: Application
    Filed: April 1, 2002
    Publication date: February 27, 2003
    Inventors: Felix M. Sciulli, Mohamed A. Hashish, Steven J. Craigen, Bruce M. Schuman, Chidambaram Raghavan, Andreas Meyer, Wayne Johnson
  • Publication number: 20030029934
    Abstract: A high-pressure fluidjet nozzle is formed from a plurality of segments joined together, for example, by a metal sleeve. Axial bores provided in the segments align to form an axial bore extending through the nozzle. The number, material, and outer and inner dimensions of the segments can be varied to provide a nozzle with desired performance characteristics. Spaces can be provided between the segments to form chambers with auxiliary ports connected to the chambers to allow monitoring and modulation of the jet.
    Type: Application
    Filed: July 31, 2001
    Publication date: February 13, 2003
    Applicant: Flow International Corporation
    Inventors: Mohamed A. Hashish, Steven J. Craigen
  • Patent number: 6464567
    Abstract: A method and apparatus for controlling the coherence of a high-pressure fluid jet directed toward a selected surface. In one embodiment, the coherence is controlled by manipulating a turbulence level of the fluid forming the fluid jet. The turbulence level can be manipulated upstream or downstream of a nozzle orifice through which the fluid passes. For example, in one embodiment, the fluid is a first fluid and a secondary fluid is entrained with the first fluid. The resulting fluid jet, which includes both the primary and secondary fluids, can be directed toward the selected surface so as to cut, mill, roughen, peen, or otherwise treat the selected surface. The characteristics of the secondary fluid can be selected to either increase or decrease the coherence of the fluid jet. In other embodiments, turbulence generators, such as inverted conical channels, upstream orifices, protrusions and other devices can be positioned upstream of the nozzle orifice to control the coherence of the resulting fluid jet.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: October 15, 2002
    Assignee: Flow International Corporation
    Inventors: Mohamed A. Hashish, Steven J. Craigen, Felice M. Sciulli, Yasuo Baba
  • Publication number: 20020034924
    Abstract: A method and apparatus for controlling the coherence of a high-pressure fluid jet directed toward a selected surface. In one embodiment, the coherence is controlled by manipulating a turbulence level of the fluid forming the fluid jet. The turbulence level can be manipulated upstream or downstream of a nozzle orifice through which the fluid passes. For example, in one embodiment, the fluid is a first fluid and a secondary fluid is entrained with the first fluid. The resulting fluid jet, which includes both the primary and secondary fluids, can be directed toward the selected surface so as to cut, mill, roughen, peen, or otherwise treat the selected surface. The characteristics of the secondary fluid can be selected to either increase or decrease the coherence of the fluid jet. In other embodiments, turbulence generators, such as inverted conical channels, upstream orifices, protrusions and other devices can be positioned upstream of the nozzle orifice to control the coherence of the resulting fluid jet.
    Type: Application
    Filed: July 31, 2001
    Publication date: March 21, 2002
    Inventors: Mohamed A. Hashish, Steven J. Craigen, Felice M. Sciulli, Yasuo Baba
  • Publication number: 20010046833
    Abstract: A method and apparatus for controlling the coherence of a high-pressure fluid jet directed toward a selected surface. In one embodiment, the coherence is controlled by manipulating a turbulence level of the fluid forming the fluid jet. The turbulence level can be manipulated upstream or downstream of a nozzle orifice through which the fluid passes. For example, in one embodiment, the fluid is a first fluid and a secondary fluid is entrained with the first fluid. The resulting fluid jet, which includes both the primary and secondary fluids, can be directed toward the selected surface so as to cut, mill, roughen, peen, or otherwise treat the selected surface. The characteristics of the secondary fluid can be selected to either increase or decrease the coherence of the fluid jet. In other embodiments, turbulence generators, such as inverted conical channels, upstream orifices, protrusions and other devices can be positioned upstream of the nozzle orifice to control the coherence of the resulting fluid jet.
    Type: Application
    Filed: July 31, 2001
    Publication date: November 29, 2001
    Inventors: Mohamed A. Hashish, Steven J. Craigen, Felice M. Sciulli, Yasuo Baba
  • Patent number: 6280302
    Abstract: A method and apparatus for controlling the coherence of a high-pressure fluid jet directed toward a selected surface. In one embodiment, the coherence is controlled by manipulating a turbulence level of the fluid forming the fluid jet. The turbulence level can be manipulated upstream or downstream of a nozzle orifice through which the fluid passes. For example, in one embodiment, the fluid is a first fluid and a secondary fluid is entrained with the first fluid. The resulting fluid jet, which includes both the primary and secondary fluids, can be directed toward the selected surface so as to cut, mill, roughen, peen, or otherwise treat the selected surface. The characteristics of the secondary fluid can be selected to either increase or decrease the coherence of the fluid jet. In other embodiments, turbulence generators, such as inverted conical channels, upstream orifices, protrusions and other devices can be positioned upstream of the nozzle orifice to control the coherence of the resulting fluid jet.
    Type: Grant
    Filed: March 24, 1999
    Date of Patent: August 28, 2001
    Assignee: Flow International Corporation
    Inventors: Mohamed A. Hashish, Steven J. Craigen, Felice M. Sciulli, Yasuo Baba
  • Patent number: 5704824
    Abstract: The invention describes a method and apparatus for milling objects by means of high velocity abrasive waterjet. The apparatus includes means for holding and producing relative motion in three dimensions of both the workpiece and the jet. Control means are provided to allow uniform and variable depth milling of complex shapes and automatic variations in relative speed, standoff distance, angle and pressure. The method includes the use of a resistant mask for facilitating milling and production of masks by the same tool used for milling.
    Type: Grant
    Filed: March 15, 1996
    Date of Patent: January 6, 1998
    Inventors: Mohamad Hashish, David O. Monserud, Steven J. Craigen, Mark H. Marvin, Paul H. Tacheron, David H. Bothell, Ronald C. Lilley, Peter J. Miles
  • Patent number: 4951429
    Abstract: An abrasivejet nozzle assembly is disclosed which is particularly suitable for drilling small diameter holes in a workpiece. Such assemblies include a mixing region wherein abrasive particles are entrained into a high velocity waterjet formed as high pressure water is forced through a jet-forming orifice. Among the unique features of the nozzle assembly are an inwardly tapered abrasive path just upstream of the mixing region, flushing conduits immediately upstream and downstream of the mixing region, and a venting passageway upstream of the mixing region which prevents the backflow of abrasive dust towards the jet-forming orifice.
    Type: Grant
    Filed: April 7, 1989
    Date of Patent: August 28, 1990
    Assignee: Flow Research, Inc.
    Inventors: Mohamed Hashish, Steven J. Craigen
  • Patent number: D470566
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: February 18, 2003
    Assignee: Flow International Corporation
    Inventors: Felix M. Sciulli, Mohamed A. Hashish, Steven J. Craigen, Bruce M. Schuman
  • Patent number: D480783
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: October 14, 2003
    Assignee: Flow International Corporation
    Inventors: Felix M. Sciulli, Mohamed A. Hashish, Steven J. Craigen, Bruce M. Schuman