Patents by Inventor Steven J. Visco

Steven J. Visco has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150162641
    Abstract: The present invention is directed to protected active metal negative electrodes for use in an electrochemical device such as a rechargeable battery cells, and to novel battery cells incorporating said protected electrodes. In accordance with the invention, the interior of the anode compartment includes, what is termed herein, a reservoir architecture for accommodating liquid anolyte in contact with the active metal electroactive material layer and is spatially engineered to improve service life of the instant electrode, and in particular embodiments to enhance cycle life of a battery cell in which the protected electrode is employed.
    Type: Application
    Filed: December 9, 2014
    Publication date: June 11, 2015
    Inventors: Steven J. Visco, Vitaliy Nimon, Yevgeniy S. Nimon, Bruce D. Katz, Lutgard C. De Jonghe, Alexei Petrov
  • Publication number: 20150024251
    Abstract: Active metal and active metal intercalation electrode structures and battery cells having ionically conductive protective architecture including an active metal (e.g., lithium) conductive impervious layer separated from the electrode (anode) by a porous separator impregnated with a non-aqueous electrolyte (anolyte). This protective architecture prevents the active metal from deleterious reaction with the environment on the other (cathode) side of the impervious layer, which may include aqueous or non-aqueous liquid electrolytes (catholytes) and/or a variety of electrochemically active materials, including liquid, solid and gaseous oxidizers. Safety additives and designs that facilitate manufacture are also provided.
    Type: Application
    Filed: July 31, 2014
    Publication date: January 22, 2015
    Inventors: Steven J. Visco, Bruce D. Katz, Yevgeniy S. Nimon, Lutgard C. De Jonghe
  • Patent number: 8932771
    Abstract: Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: January 13, 2015
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Vitaliy Nimon, Lutgard C. De Jonghe, Yury Volfkovich, Daniil Bograchev
  • Publication number: 20150004457
    Abstract: A water activated lithium battery cell having a thermal agent component for warming up cell components upon deployment. Also a water-activated battery system that is adapted to operate in and/or on the surface of a waterbody (i.e., a body of water including those which are natural or man made). In various embodiments the battery system comprises an operably breachable hermetic enclosure and at least one lithium battery cell having an open-cathode architecture, the lithium cell disposed inside the hermetic enclosure and therein maintained in an open ionic circuit condition (i.e., an inactive state) throughout battery system storage. Moreover, optionally, a thermal agent may be disposed inside the hermetic enclosure for warming up one or more battery cell components, the agent typically water activated, which is to mean that it (the thermal agent) evolves heat by reacting with water.
    Type: Application
    Filed: June 27, 2014
    Publication date: January 1, 2015
    Inventors: Steven J. Visco, Lutgard C. De Jonghe, Vitaliy Nimon, Alexei Petrov, Ian Wogan, Yevgeniy S. Nimon, Bruce D. Katz
  • Publication number: 20140335392
    Abstract: Water activated alkali metal battery cells, protected anode bi-polar electrodes and multi-cell stacks are configurable to achieve very high energy density. The cells, bi-polar electrode and multi-cell stacks include a protected anode and a cathode having a solid phase electro-active component material that is reduced during cell discharge.
    Type: Application
    Filed: May 28, 2014
    Publication date: November 13, 2014
    Applicant: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz
  • Publication number: 20140322584
    Abstract: Provided are lithium sulfur battery cells that use water as an electrolyte solvent. In various embodiments the water solvent enhances one or more of the following cell attributes: energy density, power density and cycle life. Significant cost reduction can also be realized by using an aqueous electrolyte in combination with a sulfur cathode. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage.
    Type: Application
    Filed: July 17, 2014
    Publication date: October 30, 2014
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Bruce D. Katz, Lutgard C. De Jonghe, Nikolay Goncharenko, Valentina Loginova
  • Publication number: 20140272524
    Abstract: Disclosed are ionically conductive membranes for protection of active metal anodes and methods for their fabrication. The membranes may be incorporated in active metal negative electrode (anode) structures and battery cells. In accordance with the invention, the membrane has the desired properties of high overall ionic conductivity and chemical stability towards the anode, the cathode and ambient conditions encountered in battery manufacturing. The membrane is capable of protecting an active metal anode from deleterious reaction with other battery components or ambient conditions while providing a high level of ionic conductivity to facilitate manufacture and/or enhance performance of a battery cell in which the membrane is incorporated.
    Type: Application
    Filed: May 30, 2014
    Publication date: September 18, 2014
    Applicant: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Bruce D. Katz
  • Patent number: 8828575
    Abstract: Provided are lithium sulfur battery cells that use water as an electrolyte solvent. In various embodiments the water solvent enhances one or more of the following cell attributes: energy density, power density and cycle life. Significant cost reduction can also be realized by using an aqueous electrolyte in combination with a sulfur cathode. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: September 9, 2014
    Assignee: PolyPlus Batter Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Bruce D. Katz, Lutgard C. De Jonghe, Nikolay Goncharenko, Valentina Loginova
  • Patent number: 8828580
    Abstract: Active metal and active metal intercalation electrode structures and battery cells having ionically conductive protective architecture including an active metal (e.g., lithium) conductive impervious layer separated from the electrode (anode) by a porous separator impregnated with a non-aqueous electrolyte (anolyte). This protective architecture prevents the active metal from deleterious reaction with the environment on the other (cathode) side of the impervious layer, which may include aqueous or non-aqueous liquid electrolytes (catholytes) and/or a variety of electrochemically active materials, including liquid, solid and gaseous oxidizers. Safety additives and designs that facilitate manufacture are also provided.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: September 9, 2014
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Bruce D. Katz, Yevgeniy S. Nimon, Lutgard C. De Jonghe
  • Patent number: 8828573
    Abstract: Provided are lithium sulfur battery cells that use water as an electrolyte solvent. In various embodiments the water solvent enhances one or more of the following cell attributes: energy density, power density and cycle life. Significant cost reduction can also be realized by using an aqueous electrolyte in combination with a sulfur cathode. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: September 9, 2014
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Bruce D. Katz, Lutgard C. De Jonghe, Nikolay Goncharenko, Valentina Loginova
  • Patent number: 8828574
    Abstract: Provided are lithium sulfur battery cells that use water as an electrolyte solvent. In various embodiments the water solvent enhances one or more of the following cell attributes: energy density, power density and cycle life. Significant cost reduction can also be realized by using an aqueous electrolyte in combination with a sulfur cathode. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: September 9, 2014
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Bruce D. Katz, Lutgard C. De Jonghe, Nikolay Goncharenko, Valentina Loginova
  • Patent number: 8778522
    Abstract: Disclosed are ionically conductive membranes for protection of active metal anodes and methods for their fabrication. The membranes may be incorporated in active metal negative electrode (anode) structures and battery cells. In accordance with the invention, the membrane has the desired properties of high overall ionic conductivity and chemical stability towards the anode, the cathode and ambient conditions encountered in battery manufacturing. The membrane is capable of protecting an active metal anode from deleterious reaction with other battery components or ambient conditions while providing a high level of ionic conductivity to facilitate manufacture and/or enhance performance of a battery cell in which the membrane is incorporated.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: July 15, 2014
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Bruce D. Katz
  • Patent number: 8758914
    Abstract: Li-Ion/Polysulfide flow battery systems are provided to achieve high energy density and long service life. The system is configured to minimize corrosion of the lithium electrode by providing an electrochemical reactor comprising a first and a second electrode configured in spaced apart relation defining an inter-electrode channel through which the sulfur electrolyte is caused to flow.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: June 24, 2014
    Assignee: PolyPlus Battery Company
    Inventors: Lutgard C. De Jonghe, Steven J. Visco, Yevgeniy S. Nimon, Bruce D. Katz
  • Publication number: 20140170465
    Abstract: Active metal and active metal intercalation electrode structures and battery cells having ionically conductive protective architecture including an active metal (e.g., lithium) conductive impervious layer separated from the electrode (anode) by a porous separator impregnated with a non-aqueous electrolyte (anolyte). This protective architecture prevents the active metal from deleterious reaction with the environment on the other (cathode) side of the impervious layer, which may include aqueous or non-aqueous liquid electrolytes (catholytes) and/or a variety electrochemically active materials, including liquid, solid and gaseous oxidizers. Safety additives and designs that facilitate manufacture are also provided.
    Type: Application
    Filed: January 15, 2014
    Publication date: June 19, 2014
    Inventors: Steven J. Visco, Bruce D. Katz, Yevgeniy S. Nimon, Lutgard C. De Jonghe
  • Publication number: 20140162108
    Abstract: Protected anode architectures provide a hermetic enclosure for an active metal (e.g., alkali metal, such as lithium) anode inside an anode compartment. The compartment is substantially impervious to ambient moisture and battery components such as catholyte (electrolyte about the cathode, and in some aspects catholyte may also comprise dissolved or suspended redox active species and redox active liquids), and prevents volatile components of the protected anode, such as anolyte (electrolyte about the anode), from escaping, while allowing for active metal ion transport between the anode and cathode into and out of the anode compartment.
    Type: Application
    Filed: February 14, 2014
    Publication date: June 12, 2014
    Applicant: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard De Jonghe, Bruce D. Katz, Alexei Petrov
  • Patent number: 8709679
    Abstract: Active metal fuel cells are provided. An active metal fuel cell has a renewable active metal (e.g., lithium) anode and a cathode structure that includes an electronically conductive component (e.g., a porous metal or alloy), an ionically conductive component (e.g., an electrolyte), and a fluid oxidant (e.g., air, water or a peroxide or other aqueous solution). The pairing of an active metal anode with a cathode oxidant in a fuel cell is enabled by an ionically conductive protective membrane on the surface of the anode facing the cathode.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: April 29, 2014
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Bruce D. Katz, Lutgard C. De Jonghe
  • Patent number: 8691444
    Abstract: Protected anode architectures for active metal anodes have a polymer adhesive seal that provides a hermetic enclosure for the active metal of the protected anode inside an anode compartment. The compartment is substantially impervious to ambient moisture and battery components such as catholyte (electrolyte about the cathode), and prevents volatile components of the protected anode, such as anolyte (electrolyte about the anode), from escaping. The architecture is formed by joining the protected anode to an anode container. The polymer adhesive seals provide a hermetic seal at the joint between a surface of the protected anode and the container.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: April 8, 2014
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Alexei Petrov
  • Patent number: 8673477
    Abstract: Li/air battery cells are configurable to achieve very high energy density. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. In addition to the aqueous catholyte, components of the cathode compartment include an air cathode (e.g., oxygen electrode) and a variety of other possible elements.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: March 18, 2014
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Lutgard C. De Jonghe, Yevgeniy S. Nimon, Alexei Petrov, Kirill Pridatko, Bruce Katz
  • Publication number: 20140057182
    Abstract: Active metal oxygen battery cells and active metal oxygen battery flow systems are configurable to achieve very high energy density. The cells and flow systems include an active metal anode and a cathode in contact with an organic liquid phase oxygen-carrying compound for storing and delivering molecular oxygen to the cathode whereon the molecular oxygen is electro-reduced during cell discharge.
    Type: Application
    Filed: November 4, 2011
    Publication date: February 27, 2014
    Applicant: POLYPLUS BATTERY COMPANY
    Inventors: Lutgard C. DeJonghe, Steven J. Visco, Yevgeniy S. Nimon, Vitaliy Nimon
  • Publication number: 20140057153
    Abstract: Active metal and active metal intercalation electrode structures and battery cells having ionically conductive protective architecture including an active metal (e.g., lithium) conductive impervious layer separated from the electrode (anode) by a porous separator impregnated with a non-aqueous electrolyte (anolyte). This protective architecture prevents the active metal from deleterious reaction with the environment on the other (cathode) side of the impervious layer, which may include aqueous or non-aqueous liquid electrolytes (catholytes) and/or a variety of electrochemically active materials, including liquid, solid and gaseous oxidizers. Safety additives and designs that facilitate manufacture are also provided.
    Type: Application
    Filed: June 27, 2013
    Publication date: February 27, 2014
    Inventors: Steven J. Visco, Bruce D. Katz, Yevgeniy S. Nimon, Lutgard C. De Jonghe