Patents by Inventor Steven J. Visco

Steven J. Visco has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9660265
    Abstract: Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: May 23, 2017
    Assignee: POLYPLUS BATTERY COMPANY
    Inventors: Steven J. Visco, Nikolay Goncharenko, Vitaliy Nimon, Alexei Petrov, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Valentina Loginova
  • Patent number: 9660311
    Abstract: Aqueous Li/Air secondary battery cells are configurable to achieve high energy density and prolonged cycle life. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. The aqueous catholyte comprises an evaporative-loss resistant and/or polyprotic active compound or active agent that partakes in the discharge reaction and effectuates cathode capacity for discharge in the acidic region. This leads to improved performance including one or more of increased specific energy, improved stability on open circuit, and prolonged cycle life, as well as various methods, including a method of operating an aqueous Li/Air cell to simultaneously achieve improved energy density and prolonged cycle life.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: May 23, 2017
    Assignee: POLYPLUS BATTERY COMPANY
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Alexei Petrov, Nikolay Goncharenko
  • Patent number: 9601779
    Abstract: Alkali (or other active) metal battery and other electrochemical cells incorporating active metal anodes together with aqueous cathode/electrolyte systems. The battery cells have a highly ionically conductive protective membrane adjacent to the alkali metal anode that effectively isolates (de-couples) the alkali metal electrode from solvent, electrolyte processing and/or cathode environments, and at the same time allows ion transport in and out of these environments. Isolation of the anode from other components of a battery cell or other electrochemical cell in this way allows the use of virtually any solvent, electrolyte and/or cathode material in conjunction with the anode. Also, optimization of electrolytes or cathode-side solvent systems may be done without impacting anode stability or performance. In particular, Li/water, Li/air and Li/metal hydride cells, components, configurations and fabrication techniques are provided.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: March 21, 2017
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon
  • Publication number: 20160351911
    Abstract: Alkali (or other active) metal battery and other electrochemical cells incorporating active metal anodes together with aqueous cathode/electrolyte systems. The battery cells have a highly ionically conductive protective membrane adjacent to the alkali metal anode that effectively isolates (de-couples) the alkali metal electrode from solvent, electrolyte processing and/or cathode environments, and at the same time allows ion transport in and out of these environments. Isolation of the anode from other components of a battery cell or other electrochemical cell in this way allows the use of virtually any solvent, electrolyte and/or cathode material in conjunction with the anode. Also, optimization of electrolytes or cathode-side solvent systems may be done without impacting anode stability or performance. In particular, Li/water, Li/air and Li/metal hydride cells, components, configurations and fabrication techniques are provided.
    Type: Application
    Filed: June 3, 2016
    Publication date: December 1, 2016
    Inventors: Steven J. Visco, Yevgeniy S. Nimon
  • Publication number: 20160351878
    Abstract: Disclosed are ionically conductive membranes for protection of active metal anodes and methods for their fabrication. The membranes may be incorporated in active metal negative electrode (anode) structures and battery cells. In accordance with the invention, the membrane has the desired properties of high overall ionic conductivity and chemical stability towards the anode, the cathode and ambient conditions encountered in battery manufacturing. The membrane is capable of protecting an active metal anode from deleterious reaction with other battery components or ambient conditions while providing a high level of ionic conductivity to facilitate manufacture and/or enhance performance of a battery cell in which the membrane is incorporated.
    Type: Application
    Filed: May 6, 2016
    Publication date: December 1, 2016
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Bruce D. Katz
  • Publication number: 20160351879
    Abstract: Active metal and active metal intercalation electrode structures and battery cells having ionically conductive protective architecture including an active metal (e.g., lithium) conductive impervious layer separated from the electrode (anode) by a porous separator impregnated with a non-aqueous electrolyte (anolyte). This protective architecture prevents the active metal from deleterious reaction with the environment on the other (cathode) side of the impervious layer, which may include aqueous or non-aqueous liquid electrolytes (catholytes) and/or a variety electrochemically active materials, including liquid, solid and gaseous oxidizers. Safety additives and designs that facilitate manufacture are also provided.
    Type: Application
    Filed: May 9, 2016
    Publication date: December 1, 2016
    Inventors: Steven J. Visco, Bruce D. Katz, Yevgeniy S. Nimon, Lutgard C. De Jonghe
  • Patent number: 9419299
    Abstract: Alkali (or other active) metal battery and other electrochemical cells incorporating active metal anodes together with aqueous cathode/electrolyte systems. The battery cells have a highly ionically conductive protective membrane adjacent to the alkali metal anode that effectively isolates (de-couples) the alkali metal electrode from solvent, electrolyte processing and/or cathode environments, and at the same time allows ion transport in and out of these environments. Isolation of the anode from other components of a battery cell or other electrochemical cell in this way allows the use of virtually any solvent, electrolyte and/or cathode material in conjunction with the anode. Also, optimization of electrolytes or cathode-side solvent systems may be done without impacting anode stability or performance. In particular, Li/water, Li/air and Li/metal hydride cells, components, configurations and fabrication techniques are provided.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: August 16, 2016
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon
  • Publication number: 20160197326
    Abstract: Li/air battery cells are configurable to achieve very high energy density. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. In addition to the aqueous catholyte, components of the cathode compartment include an air cathode (e.g., oxygen electrode) and a variety of other possible elements.
    Type: Application
    Filed: January 12, 2016
    Publication date: July 7, 2016
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Bruce D. Katz
  • Publication number: 20160190640
    Abstract: A lithium ion-conductive solid electrolyte including a freestanding inorganic vitreous sheet of sulfide-based lithium ion conducting glass is capable of high performance in a lithium metal battery by providing a high degree of lithium ion conductivity while being highly resistant to the initiation and/or propagation of lithium dendrites. Such an electrolyte is also itself manufacturable, and readily adaptable for battery cell and cell component manufacture, in a cost-effective, scalable manner.
    Type: Application
    Filed: November 30, 2015
    Publication date: June 30, 2016
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Vitaliy Nimon
  • Patent number: 9368775
    Abstract: Active metal and active metal intercalation electrode structures and battery cells having ionically conductive protective architecture including an active metal (e.g., lithium) conductive impervious layer separated from the electrode (anode) by a porous separator impregnated with a non-aqueous electrolyte (anolyte). This protective architecture prevents the active metal from deleterious reaction with the environment on the other (cathode) side of the impervious layer, which may include aqueous or non-aqueous liquid electrolytes (catholytes) and/or a variety electrochemically active materials, including liquid, solid and gaseous oxidizers. Safety additives and designs that facilitate manufacture are also provided.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: June 14, 2016
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Bruce D. Katz, Yevgeniy S. Nimon, Lutgard C. De Jonghe
  • Patent number: 9362538
    Abstract: Disclosed are ionically conductive membranes for protection of active metal anodes and methods for their fabrication. The membranes may be incorporated in active metal negative electrode (anode) structures and battery cells. In accordance with the invention, the membrane has the desired properties of high overall ionic conductivity and chemical stability towards the anode, the cathode and ambient conditions encountered in battery manufacturing. The membrane is capable of protecting an active metal anode from deleterious reaction with other battery components or ambient conditions while providing a high level of ionic conductivity to facilitate manufacture and/or enhance performance of a battery cell in which the membrane is incorporated.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: June 7, 2016
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Bruce D. Katz
  • Publication number: 20160156065
    Abstract: A standalone lithium ion-conductive solid electrolyte including a freestanding inorganic vitreous sheet of sulfide-based lithium ion conducting glass is capable of high performance in a lithium metal battery by providing a high degree of lithium ion conductivity while being highly resistant to the initiation and/or propagation of lithium dendrites. Such an electrolyte is also itself manufacturable, and readily adaptable for battery cell and cell component manufacture, in a cost-effective, scalable manner.
    Type: Application
    Filed: November 30, 2015
    Publication date: June 2, 2016
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Vitaliy Nimon
  • Patent number: 9287573
    Abstract: Li/air battery cells are configurable to achieve very high energy density. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. In addition to the aqueous catholyte, components of the cathode compartment include an air cathode (e.g., oxygen electrode) and a variety of other possible elements.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: March 15, 2016
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Bruce D. Katz
  • Publication number: 20160028053
    Abstract: Protected anode architectures have ionically conductive protective membrane architectures that, in conjunction with compliant seal structures and anode backplanes, effectively enclose an active metal anode inside the interior of an anode compartment. This enclosure prevents the active metal from deleterious reaction with the environment external to the anode compartment, which may include aqueous, ambient moisture, and/or other materials corrosive to the active metal. The compliant seal structures are substantially impervious to anolytes, catholytes, dissolved species in electrolytes, and moisture and compliant to changes in anode volume such that physical continuity between the anode protective architecture and backplane are maintained. The protected anode architectures can be used in arrays of protected anode architectures and battery cells of various configurations incorporating the protected anode architectures or arrays.
    Type: Application
    Filed: July 28, 2015
    Publication date: January 28, 2016
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Alexei Petrov
  • Publication number: 20160028063
    Abstract: Active metal and active metal intercalation electrode structures and battery cells having ionically conductive protective architecture including an active metal (e.g., lithium) conductive impervious layer separated from the electrode (anode) by a porous separator impregnated with a non-aqueous electrolyte (anolyte). This protective architecture prevents the active metal from deleterious reaction with the environment on the other (cathode) side of the impervious layer, which may include aqueous or non-aqueous liquid electrolytes (catholytes) and/or a variety of electrochemically active materials, including liquid, solid and gaseous oxidizers. Safety additives and designs that facilitate manufacture are also provided.
    Type: Application
    Filed: July 24, 2015
    Publication date: January 28, 2016
    Inventors: Steven J. Visco, Bruce D. Katz, Yevgeniy S. Nimon, Lutgard C. De Jonghe
  • Publication number: 20150340720
    Abstract: Alkali (or other active) metal battery and other electrochemical cells incorporating active metal anodes together with aqueous cathode/electrolyte systems. The battery cells have a highly ionically conductive protective membrane adjacent to the alkali metal anode that effectively isolates (de-couples) the alkali metal electrode from solvent, electrolyte processing and/or cathode environments, and at the same time allows ion transport in and out of these environments. Isolation of the anode from other components of a battery cell or other electrochemical cell in this way allows the use of virtually any solvent, electrolyte and/or cathode material in conjunction with the anode. Also, optimization of electrolytes or cathode-side solvent systems may be done without impacting anode stability or performance. In particular, Li/water, Li/air and Li/metal hydride cells, components, configurations and fabrication techniques are provided.
    Type: Application
    Filed: July 31, 2015
    Publication date: November 26, 2015
    Inventors: Steven J. Visco, Yevgeniy S. Nimon
  • Patent number: 9136568
    Abstract: Alkali (or other active) metal battery and other electrochemical cells incorporating active metal anodes together with aqueous cathode/electrolyte systems. The battery cells have a highly ionically conductive protective membrane adjacent to the alkali metal anode that effectively isolates (de-couples) the alkali metal electrode from solvent, electrolyte processing and/or cathode environments, and at the same time allows ion transport in and out of these environments. Isolation of the anode from other components of a battery cell or other electrochemical cell in this way allows the use of virtually any solvent, electrolyte and/or cathode material in conjunction with the anode. Also, optimization of electrolytes or cathode-side solvent systems may be done without impacting anode stability or performance. In particular, Li/water, Li/air and Li/metal hydride cells, components, configurations and fabrication techniques are provided.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: September 15, 2015
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon
  • Patent number: 9130198
    Abstract: Protected anode architectures have ionically conductive protective membrane architectures that, in conjunction with compliant seal structures and anode backplanes, effectively enclose an active metal anode inside the interior of an anode compartment. This enclosure prevents the active metal from deleterious reaction with the environment external to the anode compartment, which may include aqueous, ambient moisture, and/or other materials corrosive to the active metal. The compliant seal structures are substantially impervious to anolytes, catholyes, dissolved species in electrolytes, and moisture and compliant to changes in anode volume such that physical continuity between the anode protective architecture and backplane are maintained. The protected anode architectures can be used in arrays of protected anode architectures and battery cells of various configurations incorporating the protected anode architectures or arrays.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: September 8, 2015
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard De Jonghe, Bruce D. Katz, Alexei Petrov
  • Patent number: 9123941
    Abstract: Active metal and active metal intercalation electrode structures and battery cells having ionically conductive protective architecture including an active metal (e.g., lithium) conductive impervious layer separated from the electrode (anode) by a porous separator impregnated with a non-aqueous electrolyte (anolyte). This protective architecture prevents the active metal from deleterious reaction with the environment on the other (cathode) side of the impervious layer, which may include aqueous or non-aqueous liquid electrolytes (catholytes) and/or a variety of electrochemically active materials, including liquid, solid and gaseous oxidizers. Safety additives and designs that facilitate manufacture are also provided.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: September 1, 2015
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Bruce D. Katz, Yevgeniy S. Nimon, Lutgard C. De Jonghe
  • Publication number: 20150214555
    Abstract: Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage.
    Type: Application
    Filed: March 13, 2015
    Publication date: July 30, 2015
    Inventors: Steven J. Visco, Nikolay Goncharenko, Vitaliy Nimon, Alexei Petrov, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Valentina Loginova