Patents by Inventor Steven J. Visco

Steven J. Visco has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210210819
    Abstract: Active metal and active metal intercalation electrode structures and battery cells having ionically conductive protective architecture including an active metal (e.g., lithium) conductive impervious layer separated from the electrode (anode) by a porous separator impregnated with a non-aqueous electrolyte (anolyte). This protective architecture prevents the active metal from deleterious reaction with the environment on the other (cathode) side of the impervious layer, which may include aqueous or non-aqueous liquid electrolytes (catholytes) and/or a variety electrochemically active materials, including liquid, solid and gaseous oxidizers. Safety additives and designs that facilitate manufacture are also provided.
    Type: Application
    Filed: January 5, 2021
    Publication date: July 8, 2021
    Inventors: Steven J. Visco, Bruce D. Katz, Yevgeniy S. Nimon, Lutgard C. De Jonghe
  • Publication number: 20210126236
    Abstract: Methods for making solid-state laminate electrode assemblies include methods of forming a solid electrolyte interphase (SEI) by ion implanting nitrogen and/or phosphorous into the glass surface by ion implantation.
    Type: Application
    Filed: October 2, 2020
    Publication date: April 29, 2021
    Applicant: PolyPlus Battery Company
    Inventors: Steven J. Visco, Vitaliy Nimon, Yevgeniy S. Nimon, Bruce D. Katz, Richard L. Swisher
  • Publication number: 20210111427
    Abstract: A sulfide glass solid electrolyte sheet can be protected during Li by a thin material layer coating for providing that protection (i.e., protective coating).
    Type: Application
    Filed: October 9, 2020
    Publication date: April 15, 2021
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Vitaliy Nimon, Bruce D. Katz
  • Publication number: 20210098819
    Abstract: A standalone lithium ion-conductive solid electrolyte including a freestanding inorganic vitreous sheet of sulfide-based lithium ion conducting glass is capable of high performance in a lithium metal battery by providing a high degree of lithium ion conductivity while being highly resistant to the initiation and/or propagation of lithium dendrites. Such an electrolyte is also itself manufacturable, and readily adaptable for battery cell and cell component manufacture, in a cost-effective, scalable manner.
    Type: Application
    Filed: October 1, 2020
    Publication date: April 1, 2021
    Applicant: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Vitaliy Nimon
  • Publication number: 20210098818
    Abstract: A lithium ion-conductive solid electrolyte including a freestanding inorganic vitreous sheet of sulfide-based lithium ion conducting glass is capable of high performance in a lithium metal battery by providing a high degree of lithium ion conductivity while being highly resistant to the initiation and/or propagation of lithium dendrites. Such an electrolyte is also itself manufacturable, and readily adaptable for battery cell and cell component manufacture, in a cost-effective, scalable manner.
    Type: Application
    Filed: October 1, 2020
    Publication date: April 1, 2021
    Applicant: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Vitaliy Nimon
  • Patent number: 10916753
    Abstract: Active metal and active metal intercalation electrode structures and battery cells having ionically conductive protective architecture including an active metal (e.g., lithium) conductive impervious layer separated from the electrode (anode) by a porous separator impregnated with a non-aqueous electrolyte (anolyte). This protective architecture prevents the active metal from deleterious reaction with the environment on the other (cathode) side of the impervious layer, which may include aqueous or non-aqueous liquid electrolytes (catholytes) and/or a variety electrochemically active materials, including liquid, solid and gaseous oxidizers. Safety additives and designs that facilitate manufacture are also provided.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: February 9, 2021
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Bruce D. Katz, Yevgeniy S. Nimon, Lutgard C. De Jonghe
  • Publication number: 20200395633
    Abstract: Solid-state laminate electrode assemblies and various methods for making the solid-state laminate electrode assemblies involve a lithium metal layer reactively bonded to a lithium ion conducting sulfide glass layer. During manufacture, highly reactive surfaces of the lithium metal layer and the lithium ion conducting sulfide glass layer are maintained in its substantially unpassivated state until they have been reactively bonded.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 17, 2020
    Inventors: Steven J. Visco, Vitaliy Nimon, Ian Wogan, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz
  • Patent number: 10868293
    Abstract: Methods for making solid-state laminate electrode assemblies include methods of forming a solid electrolyte interphase (SEI) by ion implanting nitrogen and/or phosphorous into the glass surface by ion implantation.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: December 15, 2020
    Assignee: POLYPLUS BATTERY COMPANY
    Inventors: Steven J. Visco, Vitaliy Nimon, Yevgeniy S. Nimon, Bruce D. Katz, Richard L. Swisher
  • Patent number: 10862171
    Abstract: Methods for making solid-state laminate electrode assemblies include methods to prevent devitrifying and damaging a lithium ion conducting sulfide glass substrate during thermal evaporation of lithium metal, as well as methods for making thin extruded lithium metal foils.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: December 8, 2020
    Assignee: POLYPLUS BATTERY COMPANY
    Inventors: Steven J. Visco, Vitaliy Nimon, Yevgeniy S. Nimon, Bruce D. Katz, Richard L. Swisher
  • Patent number: 10840547
    Abstract: Nanofilm-encapsulated sulfide glass solid electrolyte structures and methods for making the encapsulated glass structures involve a lithium ion conducting sulfide glass sheet encapsulated on its opposing major surfaces by a continuous and conformal nanofilm made by atomic layer deposition (ALD). During manufacture, the reactive surfaces of the sulfide glass sheet are protected from deleterious reaction with ambient moisture, and the nanofilm can be configured to provide additional performance advantages, including enhanced mechanical strength and improved chemical resistance.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: November 17, 2020
    Assignee: POLYPLUS BATTERY COMPANY
    Inventors: Steven J. Visco, Vitaliy Nimon, Yevgeniy S. Nimon, Bruce D. Katz
  • Patent number: 10840546
    Abstract: A lithium ion-conductive solid electrolyte including a freestanding inorganic vitreous sheet of sulfide-based lithium ion conducting glass is capable of high performance in a lithium metal battery by providing a high degree of lithium ion conductivity while being highly resistant to the initiation and/or propagation of lithium dendrites. Such an electrolyte is also itself manufacturable, and readily adaptable for battery cell and cell component manufacture, in a cost-effective, scalable manner.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: November 17, 2020
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Vitaliy Nimon
  • Patent number: 10833361
    Abstract: A standalone lithium ion-conductive solid electrolyte including a freestanding inorganic vitreous sheet of sulfide-based lithium ion conducting glass is capable of high performance in a lithium metal battery by providing a high degree of lithium ion conductivity while being highly resistant to the initiation and/or propagation of lithium dendrites. Such an electrolyte is also itself manufacturable, and readily adaptable for battery cell and cell component manufacture, in a cost-effective, scalable manner.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: November 10, 2020
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Vitaliy Nimon
  • Publication number: 20200259212
    Abstract: A lithium ion-conductive solid electrolyte including a freestanding inorganic vitreous sheet of sulfide-based lithium ion conducting glass is capable of high performance in a lithium metal battery. Such an electrolyte is also manufacturable, and readily adaptable for battery cell and cell component manufacture, in a cost-effective, scalable manner using an automated machine based system, apparatus and methods based on inline spectrophotometry to assess and inspect the quality of such vitreous solid electrolyte sheets and associated components. Suitable manufacturing methods can involve multi-stage thinning of a sulfide glass preform that includes a first thinning operation that involves applying a compressive force onto the preform to form a glass sheet and a second thinning operation that involves applying a tensile force on the as-formed glass sheet (e.g.
    Type: Application
    Filed: December 19, 2019
    Publication date: August 13, 2020
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Bruce D. Katz, Vitaliy Nimon
  • Publication number: 20200251773
    Abstract: Nanofilm-encapsulated sulfide glass solid electrolyte structures and methods for making the encapsulated glass structures involve a lithium ion conducting sulfide glass sheet encapsulated on its opposing major surfaces by a continuous and conformal nanofilm made by atomic layer depositon (ALD). During manufacture, the reactive surfaces of the sulfide glass sheet are protected from deleterious reaction with ambient moisture, and the nanofilm can be configured to provide additional performance advantages, including enhanced mechanical strength and improved chemical resistance.
    Type: Application
    Filed: February 4, 2020
    Publication date: August 6, 2020
    Inventors: Steven J. Visco, Vitaliy Nimon, Yevgeniy S. Nimon, Bruce D. Katz
  • Publication number: 20200243902
    Abstract: A lithium ion-conductive solid electrolyte including a freestanding inorganic vitreous sheet of sulfide-based lithium ion conducting glass is capable of high performance in a lithium metal battery by providing a high degree of lithium ion conductivity while being highly resistant to the initiation and/or propagation of lithium dendrites. Such an electrolyte is also itself manufacturable, and readily adaptable for battery cell and cell component manufacture, in a cost-effective, scalable manner. An automated machine based system, apparatus and methods assessing and inspecting the quality of such vitreous solid electrolyte sheets, electrode sub-assemblies and lithium electrode assemblies can be based on spectrophotometry and can be performed inline with fabricating the sheet or web (e.g., inline with drawing of the vitreous Li ion conducting glass) and/or with the manufacturing of associated electrode sub-assemblies and lithium electrode assemblies and battery cells.
    Type: Application
    Filed: February 6, 2020
    Publication date: July 30, 2020
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Vitaliy Nimon
  • Patent number: 10707536
    Abstract: Solid-state laminate electrode assemblies and various methods for making the solid-state laminate electrode assemblies involve a lithium metal layer reactively bonded to a lithium ion conducting sulfide glass layer. During manufacture, highly reactive surfaces of the lithium metal layer and the lithium ion conducting sulfide glass layer are maintained in its substantially unpassivated state until they have been reactively bonded.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: July 7, 2020
    Assignee: POLYPLUS BATTERY COMPANY
    Inventors: Steven J. Visco, Vitaliy Nimon, Ian Wogan, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz
  • Publication number: 20200168876
    Abstract: Active metal and active metal intercalation electrode structures and battery cells having ionically conductive protective architecture including an active metal (e.g., lithium) conductive impervious layer separated from the electrode (anode) by a porous separator impregnated with a non-aqueous electrolyte (anolyte). This protective architecture prevents the active metal from deleterious reaction with the environment on the other (cathode) side of the impervious layer, which may include aqueous or non-aqueous liquid electrolytes (catholytes) and/or a variety electrochemically active materials, including liquid, solid and gaseous oxidizers. Safety additives and designs that facilitate manufacture are also provided.
    Type: Application
    Filed: November 25, 2019
    Publication date: May 28, 2020
    Applicant: PolyPlus Battery Company
    Inventors: Steven J. Visco, Bruce D. Katz, Yevgeniy S. Nimon, Lutgard C. De Jonghe
  • Publication number: 20200127275
    Abstract: Methods for making solid-state laminate electrode assemblies include methods of forming a solid electrolyte interphase (SEI) by ion implanting nitrogen and/or phosphorous into the glass surface by ion implantation.
    Type: Application
    Filed: October 24, 2019
    Publication date: April 23, 2020
    Inventors: Steven J. Visco, Vitaliy Nimon, Yevgeniy S. Nimon, Bruce D. Katz, Richard L. Swisher
  • Patent number: 10629950
    Abstract: Nanofilm-encapsulated sulfide glass solid electrolyte structures and methods for making the encapsulated glass structures involve a lithium ion conducting sulfide glass sheet encapsulated on its opposing major surfaces by a continuous and conformal nanofilm made by atomic layer deposition (ALD). During manufacture, the reactive surfaces of the sulfide glass sheet are protected from deleterious reaction with ambient moisture, and the nanofilm can be configured to provide additional performance advantages, including enhanced mechanical strength and improved chemical resistance.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: April 21, 2020
    Assignee: POLYPLUS BATTERY COMPANY
    Inventors: Steven J. Visco, Vitaliy Nimon, Yevgeniy S. Nimon, Bruce D. Katz
  • Patent number: 10601071
    Abstract: A lithium ion-conductive solid electrolyte including a freestanding inorganic vitreous sheet of sulfide-based lithium ion conducting glass is capable of high performance in a lithium metal battery by providing a high degree of lithium ion conductivity while being highly resistant to the initiation and/or propagation of lithium dendrites. Such an electrolyte is also itself manufacturable, and readily adaptable for battery cell and cell component manufacture, in a cost-effective, scalable manner. An automated machine based system, apparatus and methods assessing and inspecting the quality of such vitreous solid electrolyte sheets, electrode sub-assemblies and lithium electrode assemblies can be based on spectrophotometry and can be performed inline with fabricating the sheet or web (e.g., inline with drawing of the vitreous Li ion conducting glass) and/or with the manufacturing of associated electrode sub-assemblies and lithium electrode assemblies and battery cells.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: March 24, 2020
    Assignee: POLYPLUS BATTERY COMPANY
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Vitaliy Nimon