Patents by Inventor Steven John Holmes

Steven John Holmes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7668004
    Abstract: Non-volatile and radiation-hard switching and memory devices using vertical nano-tubes and reversibly held in state by van der Waals' forces and methods of fabricating the devices. Means for sensing the state of the devices include measuring capacitance, and tunneling and field emission currents.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: February 23, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
  • Patent number: 7651902
    Abstract: Hybrid substrates characterized by semiconductor islands of different crystal orientations and methods of forming such hybrid substrates. The methods involve using a SIMOX process to form an insulating layer. The insulating layer may divide the islands of at least one of the different crystal orientations into mutually aligned device and body regions. The body regions may be electrically floating relative to the device regions.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: January 26, 2010
    Assignee: International Business Machines Corporation
    Inventors: Ethan Harrison Cannon, Toshiharu Furukawa, John Gerard Gaudiello, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III, Jack Allan Mandelman, William Robert Tonti
  • Publication number: 20090311490
    Abstract: A new lithographic process comprises reducing the linewidth of an image while maintaining the lithographic process window, and using this process to fabricate pitch split structures comprising nm order (e.g., about 22 nm) node semiconductor devices. The process comprises applying a lithographic resist layer on a surface of a substrate and patterning and developing the lithographic resist layer to form a nm order node image having an initial line width. Overcoating the nm order node image with an acidic polymer produces an acidic polymer coated image. Heating the acidic polymer coated image gives a heat treated coating on the image, the heating being conducted at a temperature and for a time sufficient to reduce the initial linewidth to a subsequent narrowed linewidth. Developing the heated treated coating removes it from the image resulting in a free-standing trimmed lithographic feature on the substrate. Optionally repeating the foregoing steps further reduces the linewidth of the narrowed line.
    Type: Application
    Filed: June 12, 2008
    Publication date: December 17, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sean David Burns, Matthew E. Colburn, Steven John Holmes, Wu-Song Huang
  • Patent number: 7629192
    Abstract: Acceleration and voltage measurement devices and methods of fabricating acceleration and voltage measurement devices. The acceleration and voltage measurement devices including an electrically conductive plate on a top surface of a first insulating layer; a second insulating layer on a top surface of the conductive plate, the top surface of the plate exposed in an opening in the second insulating layer; conductive nanotubes suspended across the opening, and electrically conductive contacts to the nanotubes.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: December 8, 2009
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III, Leah Marie Pfeifer Pastel
  • Patent number: 7607455
    Abstract: Micro-valves and micro-pumps and methods of fabricating micro-valves and micro-pumps. The micro-valves and micro-pumps include electrically conductive diaphragms fabricated from electrically conductive nano-fibers. Fluid flow through the micro-valves and pumping action of the micro-pumps is accomplished by applying electrostatic forces to the electrically conductive diaphragms.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: October 27, 2009
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
  • Patent number: 7579272
    Abstract: Methods of forming low-k dielectric layers for use in the manufacture of semiconductor devices and fabricating semiconductor structures using the low-k dielectric material. The low-k dielectric material comprises carbon nanostructures, like carbon nanotubes or carbon buckyballs, that are characterized by an insulating electronic state. The carbon nanostructures may be converted to the insulating electronic state either before or after a layer containing the carbon nanostructures is formed on a substrate. One approach for converting the carbon nanostructures to the insulating electronic state is fluorination.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: August 25, 2009
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
  • Patent number: 7525156
    Abstract: To isolate two active regions formed on a silicon-on-insulator (SOI) substrate, a shallow trench isolation region is filled with liquid phase deposited silicon dioxide (LPD-SiO2) while avoiding covering the active areas with the oxide. By selectively depositing the oxide in this manner, the polishing needed to planarize the wafer is significantly reduced as compared to a chemical-vapor deposited oxide layer that covers the entire wafer surface. Additionally, the LPD-SiO2 does not include the growth seams that CVD silicon dioxide does. Accordingly, the etch rate of the LPD-SiO2 is uniform across its entire expanse thereby preventing cavities and other etching irregularities present in prior art shallow trench isolation regions in which the etch rate of growth seams exceeds that of the other oxide areas.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: April 28, 2009
    Assignee: International Business Machines Corporation
    Inventors: Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III, Peter H. Mitchell, Larry Alan Nesbit
  • Patent number: 7505110
    Abstract: Methods of fabricating micro-valves and micro-pumps. The micro-valves and micro-pumps that are fabricated include electrically conductive diaphragms fabricated from electrically conductive nano-fibers. Fluid flow through the micro-valves and pumping action of the micro-pumps is accomplished by applying electrostatic forces to the electrically conductive diaphragms.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: March 17, 2009
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
  • Patent number: 7492046
    Abstract: A fuse structure and a method for operating the same. The fuse structure operating method includes providing a structure. The structure includes (a) an electrically conductive layer and (b) N electrically conductive regions hanging over without touching the electrically conductive layer. N is a positive integer and N is greater than 1. The N electrically conductive regions are electrically connected together. The structure operating method further includes causing a first electrically conductive region of the N electrically conductive regions to touch the electrically conductive layer without causing the remaining N?1 electrically conductive regions to touch the electrically conductive layer.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: February 17, 2009
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
  • Publication number: 20090035708
    Abstract: A structure and a method for forming the same. The method includes providing a structure which includes (a) a to-be-patterned layer, (b) a photoresist layer on top of the to-be-patterned layer wherein the photoresist layer includes a first opening, and (c) a cap region on side walls of the first opening. A first top surface of the to-be-patterned layer is exposed to a surrounding ambient through the first opening. The method further includes performing a first lithography process resulting in a second opening in the photoresist layer. The second opening is different from the first opening. A second top surface of the to-be-patterned layer is exposed to a surrounding ambient through the second opening.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 5, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
  • Patent number: 7483285
    Abstract: Structures for memory devices. The structure includes (a) a substrate; (b) a first and second electrode regions on the substrate; and (c) a third electrode region disposed between the first and second electrode regions. In response to a first write voltage potential applied between the first and third electrode regions, the third electrode region changes its own shape, such that in response to a pre-specified read voltage potential subsequently applied between the first and third electrode regions, a sensing current flows between the first and third electrode regions. In addition, in response to a second write voltage potential being applied between the second and third electrode regions, the third electrode region changes its own shape such that in response to the pre-specified read voltage potential applied between the first and third electrode regions, said sensing current does not flow between the first and third electrode regions.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: January 27, 2009
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
  • Publication number: 20080258222
    Abstract: Design structure embodied in a machine readable medium for designing, manufacturing, or testing a design in which the design structure includes devices formed in a hybrid substrate characterized by semiconductor islands of different crystal orientations. An insulating layer divides the islands of at least one of the different crystal orientations into mutually aligned device and body regions. The body regions may be electrically floating relative to the device regions.
    Type: Application
    Filed: October 24, 2007
    Publication date: October 23, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ethan Harrison Cannon, Toshiharu Furukawa, John Gerard Gaudiello, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, Jack Allan Mandelman, William Robert Tonti
  • Publication number: 20080258181
    Abstract: Hybrid substrates characterized by semiconductor islands of different crystal orientations and methods of forming such hybrid substrates. The methods involve using a SIMOX process to form an insulating layer. The insulating layer may divide the islands of at least one of the different crystal orientations into mutually aligned device and body regions. The body regions may be electrically floating relative to the device regions.
    Type: Application
    Filed: April 20, 2007
    Publication date: October 23, 2008
    Inventors: Ethan Harrison Cannon, Toshiharu Furukawa, John Gerard Gaudiello, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, Jack Allan Mandelman, William Robert Tonti
  • Publication number: 20080258246
    Abstract: Acceleration and voltage measurement devices and methods of fabricating acceleration and voltage measurement devices. The acceleration and voltage measurement devices including an electrically conductive plate on a top surface of a first insulating layer; a second insulating layer on a top surface of the conductive plate, the top surface of the plate exposed in an opening in the second insulating layer; conductive nanotubes suspended across the opening, and electrically conductive contacts to said nanotubes.
    Type: Application
    Filed: July 2, 2008
    Publication date: October 23, 2008
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, Leah Marie Pfeifer Pastel
  • Patent number: 7439081
    Abstract: A conductive layer in an integrated circuit is formed as a sandwich having multiple sublayers, including at least one sublayer of oriented carbon nanotubes. The conductive layer sandwich preferably contains two sublayers of carbon nanotubes, in which the carbon nanotube orientation in one sublayer is substantially perpendicular to that of the other layer. The conductive layer sandwich preferably contains one or more additional sublayers of a conductive material, such as a metal. In one embodiment, oriented carbon nanotubes are created by forming a series of parallel surface ridges, covering the top and one side of the ridges with a catalyst inhibitor, and growing carbon nanotubes horizontally from the uncovered vertical sides of the ridges. In another embodiment, oriented carbon nanotubes are grown on the surface of a conductive material in the presence of a directional flow of reactant gases and a catalyst.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: October 21, 2008
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger III, Peter H. Mitchell
  • Publication number: 20080245984
    Abstract: Micro-valves and micro-pumps and methods of fabricating micro-valves and micro-pumps. The micro-valves and micro-pumps include electrically conductive diaphragms fabricated from electrically conductive nano-fibers. Fluid flow through the micro-valves and pumping action of the micro-pumps is accomplished by applying electrostatic forces to the electrically conductive diaphragms.
    Type: Application
    Filed: May 28, 2008
    Publication date: October 9, 2008
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger
  • Publication number: 20080227264
    Abstract: Vertical device structures incorporating at least one nanotube and methods for fabricating such device structures by chemical vapor deposition. Each nanotube is grown by chemical vapor deposition catalyzed by a catalyst pad and encased in a coating of a dielectric material. Vertical field effect transistors may be fashioned by forming a gate electrode about the encased nanotubes such that the encased nanotubes extend vertically through the thickness of the gate electrode. Capacitors may be fashioned in which the encased nanotubes and the corresponding catalyst pad bearing the encased nanotubes forms one capacitor plate.
    Type: Application
    Filed: October 29, 2007
    Publication date: September 18, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, Peter H. Mitchell, Larry Alan Nesbit
  • Publication number: 20080197448
    Abstract: To isolate two active regions formed on a silicon-on-insulator (SOI) substrate, a shallow trench isolation region is filled with liquid phase deposited silicon dioxide (LPD-SiO2) while avoiding covering the active areas with the oxide. By selectively depositing the oxide in this manner, the polishing needed to planarize the wafer is significantly reduced as compared to a chemical-vapor deposited oxide layer that covers the entire wafer surface. Additionally, the LPD-SiO2 does not include the growth seams that CVD silicon dioxide does. Accordingly, the etch rate of the LPD-SiO2 is uniform across its entire expanse thereby preventing cavities and other etching irregularities present in prior art shallow trench isolation regions in which the etch rate of growth seams exceeds that of the other oxide areas.
    Type: Application
    Filed: April 30, 2008
    Publication date: August 21, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, Peter H. Mitchell, Larry Alan Nesbit
  • Publication number: 20080160312
    Abstract: Methods for synthesizing carbon nanotubes and structures formed thereby. The method includes forming carbon nanotubes on a plurality of synthesis sites supported by a first substrate, interrupting nanotube synthesis, mounting a free end of each carbon nanotube to a second substrate, and removing the first substrate. Each carbon nanotube is capped by one of the synthesis sites, to which growth reactants have ready access. As the carbon nanotubes lengthen during resumed nanotube synthesis, access to the synthesis sites remains unoccluded.
    Type: Application
    Filed: February 14, 2008
    Publication date: July 3, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, Peter H. Mitchell, Larry Alan Nesbit
  • Publication number: 20080137397
    Abstract: Non-volatile and radiation-hard switching and memory devices using vertical nano-tubes and reversibly held in state by van der Waals' forces and methods of fabricating the devices. Means for sensing the state of the devices include measuring capacitance, and tunneling and field emission currents.
    Type: Application
    Filed: January 25, 2008
    Publication date: June 12, 2008
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger