Patents by Inventor Steven M. Goetz

Steven M. Goetz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8934986
    Abstract: In one example, a device includes a telemetry module configured to retrieve graphics processing data from a device that is not configured to perform a rendering process using the graphics processing data and that is associated with delivering therapy to a therapy target of a patient, and a control unit configured to apply the graphics processing data while performing the rendering process to generate an image of an anatomical feature of the patient, wherein the anatomical feature comprises the therapy target for an implantable medical device, and to cause a display unit of a user interface to display the image, wherein the image of the anatomical feature is specific to the patient. The graphics processing data may include a list of vertices or a transform to be applied to a non-patient-specific anatomical atlas. The data may also include a location of a therapy element of the implantable medical device.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: January 13, 2015
    Assignee: Medtronic, Inc.
    Inventor: Steven M. Goetz
  • Publication number: 20140371813
    Abstract: A therapy program for peripheral nerve field stimulation (PNFS) may be selected based on user input indicating a desired therapeutic effect for a user-specified region in which a patient feels pain. In other examples, PNFS may be programmed based on input from a user selecting at least one region from among a plurality of regions in which the patient experiences pain. In addition, the PNFS may be programmed based on user input defining an aspect of PNFS for the selected region, such as a relative intensity of PNFS delivered to at least two selected regions, a balance of PNFS between at least two regions, a desired shift in PNFS from a first region to a second region, or an extent to which a first stimulation field within a first region overlaps with a second stimulation field in a second region.
    Type: Application
    Filed: September 4, 2014
    Publication date: December 18, 2014
    Inventors: Gary W. King, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Jordan J. Greenberg
  • Publication number: 20140371819
    Abstract: In general, the disclosure is related to characterization of implanted electrical stimulation electrode arrays using post-implant imaging. The electrode arrays may be carried by implanted leads. Characterization of implanted electrode arrays may include identification of the type or types of leads implanted within a patient and/or determination of positions of the implanted leads or electrodes carried by the leads relative to one another or relative to anatomical structures within the patient. In addition, the disclosure relates to techniques for specifying or modifying patient therapy parameters based on the characterization of the implanted electrode arrays.
    Type: Application
    Filed: September 3, 2014
    Publication date: December 18, 2014
    Inventors: Steven M. Goetz, Wende L. Dewing
  • Publication number: 20140350636
    Abstract: Peripheral nerve field stimulation (PNFS) may be controlled based on detected physiological effects of the PNFS, which may be an efferent response to the PNFS. In some examples, a closed-loop therapy system may include a sensing module that senses a physiological parameter of the patient, which may be indicative of the patient's response to the PNFS. Based on a signal generated by the sensing module, the PNFS may be activated, deactivated or modified. Example physiological parameters of the patient include heart rate, respiratory rate, electrodermal activity, muscle activity, blood flow rate, sweat gland activity, pilomotor reflex, or thermal activity of the patient's body. In some examples, a patient pain state may be detected based on a signal generated by the sensing module, and therapy may be controlled based on the detection of the pain state.
    Type: Application
    Filed: August 7, 2014
    Publication date: November 27, 2014
    Inventors: Gary W. King, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Jordan J. Greenberg, Kenneth T. Heruth, Mark S. Lent, Paul W. Wacnik
  • Patent number: 8890681
    Abstract: This disclosure describes techniques for displaying representations of therapy session histories with a programmer device configured to program an implantable fluid delivery device. Information regarding the session histories may be stored in a memory of the fluid delivery device. An example programmer includes a user interface comprising a display to present a representation of a plurality of therapy sessions administered by an implantable fluid delivery device to a patient, and a processor that controls the user interface to present on the display the representation of the plurality of therapy sessions. The representation may include simultaneously displayed, temporally-ordered representations of the plurality of therapy sessions, such as a graph comprising a plurality of nodes, each node corresponding to one of the therapy sessions. Horizontal locations of the nodes may correspond to relative ending dates for the corresponding therapy session, and shapes of each node may represent infusion patterns.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: November 18, 2014
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Sarah B. Alme
  • Publication number: 20140324125
    Abstract: A programming-device user interface may include multiple levels of abstraction for programming treatment settings. A stimulation zone-programming interface may be at a highest level of abstraction and may include idealized stimulation zones. A field strength-programming interface may be at a middle level of abstraction and may include electromagnetic field-strength patterns generated by the stimulation zones, and/or electrode settings, and a depiction of how the electromagnetic fields interact with each other. An electrode-programming interface may be at a lowest level of abstraction and may depict treatment settings at an electrodes-view level. These interfaces may include a display of a stimulatable area of the patient's body. The display may include a depiction of leads and/or the underlying physiology, such as a depiction of a portion of a spine. Algorithms map treatment settings from one level of abstraction to settings at one or more other levels of abstraction.
    Type: Application
    Filed: July 11, 2014
    Publication date: October 30, 2014
    Inventor: Steven M. Goetz
  • Patent number: 8862240
    Abstract: In general, the disclosure is related to characterization of implanted electrical stimulation electrode arrays using post-implant imaging. The electrode arrays may be carried by implanted leads. Characterization of implanted electrode arrays may include identification of the type or types of leads implanted within a patient and/or determination of positions of the implanted leads or electrodes carried by the leads relative to one another or relative to anatomical structures within the patient. In addition, the disclosure relates to techniques for specifying or modifying patient therapy parameters based on the characterization of the implanted electrode arrays.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: October 14, 2014
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Wende L. Dewing
  • Patent number: 8855777
    Abstract: A therapy program for peripheral nerve field stimulation (PNFS) may be selected based on user input indicating a desired therapeutic effect for a user-specified region in which a patient feels pain. In other examples, PNFS may be programmed based on input from a user selecting at least one region from among a plurality of regions in which the patient experiences pain. In addition, the PNFS may be programmed based on user input defining an aspect of PNFS for the selected region, such as a relative intensity of PNFS delivered to at least two selected regions, a balance of PNFS between at least two regions, a desired shift in PNFS from a first region to a second region, or an extent to which a first stimulation field within a first region overlaps with a second stimulation field in a second region.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: October 7, 2014
    Assignee: Medtronic, Inc.
    Inventors: Gary W. King, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Jordan J. Greenberg
  • Patent number: 8843203
    Abstract: An implantable medical device delivers neurostimulation therapy to a patient according to a parameter set. A parameter set may consist of a number of programs that are delivered substantially simultaneously. When programming the implantable medical device for the patient, a clinician programmer may maintain a session log for the patient that includes a listing of programs delivered to the patient and rating information provided by a clinician and the patient for programs of the list. The listing may be ordered according to the rating information in order to facilitate the selection of programs for a parameter set. A program library that may include particularly effective programs organized according to a directory structure may be stored in a memory. One or both of the implantable medical device and a patient programmer may store usage information that provides an objective assessment of therapy use by the patient, and allows a clinician to later improve the therapy based on the usage information.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: September 23, 2014
    Assignee: Medtronic, Inc.
    Inventors: Michael T. Lee, Daniel K. Vinup, Steven M. Goetz
  • Patent number: 8838242
    Abstract: Method, controller and system for an implantable medical device having a plurality of electrodes, the implantable medical device capable of delivering therapeutic stimulation to a patient, comprising a control module, a user interface operatively coupled to the control module, the user interface providing control of the control module by a medical professional or other user, and an electrode interface operatively coupled between the plurality of electrodes and the control module. The control module uses the electrode interface to obtain a plurality of measurements of integrity metrics for a plurality of selected pairs of individual ones of the plurality of electrodes. The control module determines a prescriptive analysis using the plurality of measurements of integrity metrics of the selected pairs of individual ones of the plurality of electrodes comparative to a range, and the user interface displays the prescriptive analysis.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: September 16, 2014
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Warren W. Ball
  • Patent number: 8805518
    Abstract: Peripheral nerve field stimulation (PNFS) may be controlled based on detected physiological effects of the PNFS, which may be an efferent response to the PNFS. In some examples, a closed-loop therapy system may include a sensing module that senses a physiological parameter of the patient, which may be indicative of the patient's response to the PNFS. Based on a signal generated by the sensing module, the PNFS may be activated, deactivated or modified. Example physiological parameters of the patient include heart rate, respiratory rate, electrodermal activity, muscle activity, blood flow rate, sweat gland activity, pilomotor reflex, or thermal activity of the patient's body. In some examples, a patient pain state may be detected based on a signal generated by the sensing module, and therapy may be controlled based on the detection of the pain state.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: August 12, 2014
    Assignee: Medtronic, Inc.
    Inventors: Gary W. King, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Jordan J. Greenberg, Kenneth T. Heruth, Mark S. Lent, Paul W. Wacnik
  • Patent number: 8798759
    Abstract: The disclosure is directed to a user interface with a menu that facilitates stimulation therapy programming. The user interface displays a representation of the electrical leads implanted in the patient and at least one menu with icons that the user can use to adjust the stimulation therapy. The user may drag one or more field shapes from a field shape selection menu onto the desired location relative to the electrical leads. A manipulation tool menu may also allow the user to adjust the field shapes placed on the electrical leads, which represent the stimulation region. The programmer that includes the user interface then generates electrical stimulation parameter values for the stimulator to deliver stimulation according to the field shapes or field shape groups defined/located by the user. The field shapes may represent different types of stimulation representations, such as current density, activation functions, and neuron models.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: August 5, 2014
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Jeffrey T. Keacher, Rajeev Sahasrabudhe, Wende L. Dewing, Jon P. Davis, John Rondoni, Gabriela C. Miyazawa, Gary W. King
  • Patent number: 8761890
    Abstract: In one example, the disclosure relates to a method comprising receiving at least one electrical stimulation parameter value defining electrical stimulation for delivery via one or more electrodes to a tissue site, and determining, via one or more processors, a volume of sub-activation threshold impact for tissue from the delivery of the electrical stimulation to the tissue site.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: June 24, 2014
    Assignee: Medtronic, Inc.
    Inventors: Rahul Gupta, Steven M. Goetz, Maciej T. Lazarewicz, Gabriela C. Molnar, Dwight E. Nelson, Jianping Wu
  • Patent number: 8751007
    Abstract: The disclosure is directed to techniques for shifting between two electrode combinations. An amplitude of a first electrode combination is incrementally decreased while an amplitude of a second, or subsequent, electrode combination is concurrently incrementally increased. Alternatively, an amplitude of the first electrode combination is maintained at a target amplitude level while the amplitude of the second electrode combination is incrementally increased. The stimulation pulses of the electrode combinations are delivered to the patient interleaved in time. In this manner, the invention provides for a smooth, gradual shift from a first electrode combination to a second electrode combination, allowing the patient to maintain a continual perception of stimulation. The shifting techniques described herein may be used during programming to shift between different electrode combinations to find an efficacious electrode combination.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: June 10, 2014
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Gary W. King, Kenneth T. Heruth, Roy L. Testerman, Michael T. Lee, Nathan A. Torgerson, Joseph J. Nolan
  • Patent number: 8744591
    Abstract: This disclosure describes techniques for obtaining an image of an anatomical implant region where leads associated with an implantable medical device are implanted in a patient, manipulating the image to show lead locations and placements, performing necessary image compression and manipulations, adjusting the image to associate it with information (e.g., patient, metadata, annotations, etc.) useful to a subsequent programmer retrieving the image, and transferring a copy of the captured image to the implantable medical device. The image stored in the implantable medical device may be retrieved at a later time by a user of programmer, where the user can use the image and other associated information to program subsequent therapy.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: June 3, 2014
    Assignee: Medtronic, Inc.
    Inventors: Jon P. Davis, Steven M. Goetz, Nathan A. Torgerson, Wende L. Dewing, Ashish Singal, Lynn A. Davenport, Rajeev M. Sahasrabudhe, Brent A. Huhta
  • Patent number: 8738145
    Abstract: The disclosure is directed to techniques for shifting between two electrode combinations. An amplitude of a first electrode combination is incrementally decreased while an amplitude of a second, or subsequent, electrode combination is concurrently incrementally increased. Alternatively, an amplitude of the first electrode combination is maintained at a target amplitude level while the amplitude of the second electrode combination is incrementally increased. The stimulation pulses of the electrode combinations are delivered to the patient interleaved in time. In this manner, the invention provides for a smooth, gradual shift from a first electrode combination to a second electrode combination, allowing the patient to maintain a continual perception of stimulation. The shifting techniques described herein may be used during programming to shift between different electrode combinations to find an efficacious electrode combination.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: May 27, 2014
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Gary W. King, Kenneth T. Heruth, Roy L. Testerman, Michael T. Lee, Nathan A. Torgerson, Joseph J. Nolan
  • Patent number: 8725269
    Abstract: A user may modify a stimulation parameter in a plurality of stimulation programs with a single adjustment. During stimulation therapy, the user, such as a patient, may desire to change a parameter of the plurality of stimulation programs. The patient may press a single button on an external programmer to make the parameter change, or global adjustment, to all of the plurality of stimulation programs. This global adjustment eliminates the need for the patient to navigate through each of the plurality of stimulation programs separately and adjust the parameter. Additionally, changing the plurality of stimulation programs may be desirable for uniform stimulation therapy between programs used by the patient. The external programmer may calculate an appropriate parameter change for each stimulation program to keep parameter ratios equal between the plurality of stimulation programs.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: May 13, 2014
    Assignee: Medtronic, Inc.
    Inventors: Joseph J. Nolan, Ruth E. Bauhahn, Steven M. Goetz
  • Patent number: 8712539
    Abstract: Techniques that involve application of one or more rules to a “parent” program to generate a plurality of different “child” programs are described. Each of the rules may define a respective electrode configuration modification, and each child program may be a variation of the parent based on a modification of the electrode configuration of the parent according to one of the rules. The systems or devices may generate further generations of child programs from a previous generation child program using the same one or more rules. The child programs may be provided to a user, so that the user may test the efficacy of the new programs, assisting the user in identifying desirable programs. The child programs may be relatively minor variations of the parent program, and the user may “fine tune” a generally desirable parent program by testing the child programs.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: April 29, 2014
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Donald R. Johnson, Andrew H. Houchins, Jeffrey T. Keacher, Theodore J. Stone, Kenneth T. Heruth, Gary W. King, Roy L. Testerman
  • Publication number: 20140107731
    Abstract: The disclosure describes a method and system that allows a user to configure electrical stimulation therapy by defining a three-dimensional (3D) stimulation field. After a stimulation lead is implanted in a patient, a clinician manipulates the 3D stimulation field in a 3D environment to encompass desired anatomical regions of the patient. In this manner, the clinician determines which anatomical regions to stimulate, and the system generates the necessary stimulation parameters. In some cases, a lead icon representing the implanted lead is displayed to show the clinician where the lead is relative to the 3D anatomical regions of the patient.
    Type: Application
    Filed: December 16, 2013
    Publication date: April 17, 2014
    Applicant: Medtronic, Inc.
    Inventors: Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Steven M. Goetz, Lynn M. Otten
  • Publication number: 20140107567
    Abstract: Techniques for remotely titrating a therapy delivered using an implantable medical device system are disclosed. An implantable medical device delivers therapy according to a first program. The system collects patient data relating to at least one of an efficacy of, or side effects resulting from, the delivered therapy, and transmits the patient data to a remote network device. A clinician may then analyze the patient data and determine if changes to the therapy are warranted. The clinician may then transmit a programming change, e.g., a modification to the first program or a new, second program, to the implantable medical device system, and the implantable medical device may deliver therapy according to the changed programming. The process of receiving patient data and modifying the therapy programming may be repeated multiple times until the therapy is adequately titrated, e.g., until the patient data indicates adequate efficacy and/or acceptable side effects.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 17, 2014
    Applicant: Medtronic, Inc.
    Inventor: Steven M. Goetz