Patents by Inventor Steven M. Goetz
Steven M. Goetz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8934986Abstract: In one example, a device includes a telemetry module configured to retrieve graphics processing data from a device that is not configured to perform a rendering process using the graphics processing data and that is associated with delivering therapy to a therapy target of a patient, and a control unit configured to apply the graphics processing data while performing the rendering process to generate an image of an anatomical feature of the patient, wherein the anatomical feature comprises the therapy target for an implantable medical device, and to cause a display unit of a user interface to display the image, wherein the image of the anatomical feature is specific to the patient. The graphics processing data may include a list of vertices or a transform to be applied to a non-patient-specific anatomical atlas. The data may also include a location of a therapy element of the implantable medical device.Type: GrantFiled: March 6, 2013Date of Patent: January 13, 2015Assignee: Medtronic, Inc.Inventor: Steven M. Goetz
-
Publication number: 20140371813Abstract: A therapy program for peripheral nerve field stimulation (PNFS) may be selected based on user input indicating a desired therapeutic effect for a user-specified region in which a patient feels pain. In other examples, PNFS may be programmed based on input from a user selecting at least one region from among a plurality of regions in which the patient experiences pain. In addition, the PNFS may be programmed based on user input defining an aspect of PNFS for the selected region, such as a relative intensity of PNFS delivered to at least two selected regions, a balance of PNFS between at least two regions, a desired shift in PNFS from a first region to a second region, or an extent to which a first stimulation field within a first region overlaps with a second stimulation field in a second region.Type: ApplicationFiled: September 4, 2014Publication date: December 18, 2014Inventors: Gary W. King, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Jordan J. Greenberg
-
Publication number: 20140371819Abstract: In general, the disclosure is related to characterization of implanted electrical stimulation electrode arrays using post-implant imaging. The electrode arrays may be carried by implanted leads. Characterization of implanted electrode arrays may include identification of the type or types of leads implanted within a patient and/or determination of positions of the implanted leads or electrodes carried by the leads relative to one another or relative to anatomical structures within the patient. In addition, the disclosure relates to techniques for specifying or modifying patient therapy parameters based on the characterization of the implanted electrode arrays.Type: ApplicationFiled: September 3, 2014Publication date: December 18, 2014Inventors: Steven M. Goetz, Wende L. Dewing
-
Publication number: 20140350636Abstract: Peripheral nerve field stimulation (PNFS) may be controlled based on detected physiological effects of the PNFS, which may be an efferent response to the PNFS. In some examples, a closed-loop therapy system may include a sensing module that senses a physiological parameter of the patient, which may be indicative of the patient's response to the PNFS. Based on a signal generated by the sensing module, the PNFS may be activated, deactivated or modified. Example physiological parameters of the patient include heart rate, respiratory rate, electrodermal activity, muscle activity, blood flow rate, sweat gland activity, pilomotor reflex, or thermal activity of the patient's body. In some examples, a patient pain state may be detected based on a signal generated by the sensing module, and therapy may be controlled based on the detection of the pain state.Type: ApplicationFiled: August 7, 2014Publication date: November 27, 2014Inventors: Gary W. King, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Jordan J. Greenberg, Kenneth T. Heruth, Mark S. Lent, Paul W. Wacnik
-
Patent number: 8890681Abstract: This disclosure describes techniques for displaying representations of therapy session histories with a programmer device configured to program an implantable fluid delivery device. Information regarding the session histories may be stored in a memory of the fluid delivery device. An example programmer includes a user interface comprising a display to present a representation of a plurality of therapy sessions administered by an implantable fluid delivery device to a patient, and a processor that controls the user interface to present on the display the representation of the plurality of therapy sessions. The representation may include simultaneously displayed, temporally-ordered representations of the plurality of therapy sessions, such as a graph comprising a plurality of nodes, each node corresponding to one of the therapy sessions. Horizontal locations of the nodes may correspond to relative ending dates for the corresponding therapy session, and shapes of each node may represent infusion patterns.Type: GrantFiled: March 24, 2010Date of Patent: November 18, 2014Assignee: Medtronic, Inc.Inventors: Steven M. Goetz, Sarah B. Alme
-
Publication number: 20140324125Abstract: A programming-device user interface may include multiple levels of abstraction for programming treatment settings. A stimulation zone-programming interface may be at a highest level of abstraction and may include idealized stimulation zones. A field strength-programming interface may be at a middle level of abstraction and may include electromagnetic field-strength patterns generated by the stimulation zones, and/or electrode settings, and a depiction of how the electromagnetic fields interact with each other. An electrode-programming interface may be at a lowest level of abstraction and may depict treatment settings at an electrodes-view level. These interfaces may include a display of a stimulatable area of the patient's body. The display may include a depiction of leads and/or the underlying physiology, such as a depiction of a portion of a spine. Algorithms map treatment settings from one level of abstraction to settings at one or more other levels of abstraction.Type: ApplicationFiled: July 11, 2014Publication date: October 30, 2014Inventor: Steven M. Goetz
-
Patent number: 8862240Abstract: In general, the disclosure is related to characterization of implanted electrical stimulation electrode arrays using post-implant imaging. The electrode arrays may be carried by implanted leads. Characterization of implanted electrode arrays may include identification of the type or types of leads implanted within a patient and/or determination of positions of the implanted leads or electrodes carried by the leads relative to one another or relative to anatomical structures within the patient. In addition, the disclosure relates to techniques for specifying or modifying patient therapy parameters based on the characterization of the implanted electrode arrays.Type: GrantFiled: January 23, 2009Date of Patent: October 14, 2014Assignee: Medtronic, Inc.Inventors: Steven M. Goetz, Wende L. Dewing
-
Patent number: 8855777Abstract: A therapy program for peripheral nerve field stimulation (PNFS) may be selected based on user input indicating a desired therapeutic effect for a user-specified region in which a patient feels pain. In other examples, PNFS may be programmed based on input from a user selecting at least one region from among a plurality of regions in which the patient experiences pain. In addition, the PNFS may be programmed based on user input defining an aspect of PNFS for the selected region, such as a relative intensity of PNFS delivered to at least two selected regions, a balance of PNFS between at least two regions, a desired shift in PNFS from a first region to a second region, or an extent to which a first stimulation field within a first region overlaps with a second stimulation field in a second region.Type: GrantFiled: January 26, 2009Date of Patent: October 7, 2014Assignee: Medtronic, Inc.Inventors: Gary W. King, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Jordan J. Greenberg
-
Patent number: 8843203Abstract: An implantable medical device delivers neurostimulation therapy to a patient according to a parameter set. A parameter set may consist of a number of programs that are delivered substantially simultaneously. When programming the implantable medical device for the patient, a clinician programmer may maintain a session log for the patient that includes a listing of programs delivered to the patient and rating information provided by a clinician and the patient for programs of the list. The listing may be ordered according to the rating information in order to facilitate the selection of programs for a parameter set. A program library that may include particularly effective programs organized according to a directory structure may be stored in a memory. One or both of the implantable medical device and a patient programmer may store usage information that provides an objective assessment of therapy use by the patient, and allows a clinician to later improve the therapy based on the usage information.Type: GrantFiled: July 7, 2009Date of Patent: September 23, 2014Assignee: Medtronic, Inc.Inventors: Michael T. Lee, Daniel K. Vinup, Steven M. Goetz
-
Patent number: 8838242Abstract: Method, controller and system for an implantable medical device having a plurality of electrodes, the implantable medical device capable of delivering therapeutic stimulation to a patient, comprising a control module, a user interface operatively coupled to the control module, the user interface providing control of the control module by a medical professional or other user, and an electrode interface operatively coupled between the plurality of electrodes and the control module. The control module uses the electrode interface to obtain a plurality of measurements of integrity metrics for a plurality of selected pairs of individual ones of the plurality of electrodes. The control module determines a prescriptive analysis using the plurality of measurements of integrity metrics of the selected pairs of individual ones of the plurality of electrodes comparative to a range, and the user interface displays the prescriptive analysis.Type: GrantFiled: April 30, 2008Date of Patent: September 16, 2014Assignee: Medtronic, Inc.Inventors: Steven M. Goetz, Warren W. Ball
-
Patent number: 8805518Abstract: Peripheral nerve field stimulation (PNFS) may be controlled based on detected physiological effects of the PNFS, which may be an efferent response to the PNFS. In some examples, a closed-loop therapy system may include a sensing module that senses a physiological parameter of the patient, which may be indicative of the patient's response to the PNFS. Based on a signal generated by the sensing module, the PNFS may be activated, deactivated or modified. Example physiological parameters of the patient include heart rate, respiratory rate, electrodermal activity, muscle activity, blood flow rate, sweat gland activity, pilomotor reflex, or thermal activity of the patient's body. In some examples, a patient pain state may be detected based on a signal generated by the sensing module, and therapy may be controlled based on the detection of the pain state.Type: GrantFiled: January 23, 2009Date of Patent: August 12, 2014Assignee: Medtronic, Inc.Inventors: Gary W. King, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Jordan J. Greenberg, Kenneth T. Heruth, Mark S. Lent, Paul W. Wacnik
-
Patent number: 8798759Abstract: The disclosure is directed to a user interface with a menu that facilitates stimulation therapy programming. The user interface displays a representation of the electrical leads implanted in the patient and at least one menu with icons that the user can use to adjust the stimulation therapy. The user may drag one or more field shapes from a field shape selection menu onto the desired location relative to the electrical leads. A manipulation tool menu may also allow the user to adjust the field shapes placed on the electrical leads, which represent the stimulation region. The programmer that includes the user interface then generates electrical stimulation parameter values for the stimulator to deliver stimulation according to the field shapes or field shape groups defined/located by the user. The field shapes may represent different types of stimulation representations, such as current density, activation functions, and neuron models.Type: GrantFiled: December 6, 2007Date of Patent: August 5, 2014Assignee: Medtronic, Inc.Inventors: Steven M. Goetz, Jeffrey T. Keacher, Rajeev Sahasrabudhe, Wende L. Dewing, Jon P. Davis, John Rondoni, Gabriela C. Miyazawa, Gary W. King
-
Patent number: 8761890Abstract: In one example, the disclosure relates to a method comprising receiving at least one electrical stimulation parameter value defining electrical stimulation for delivery via one or more electrodes to a tissue site, and determining, via one or more processors, a volume of sub-activation threshold impact for tissue from the delivery of the electrical stimulation to the tissue site.Type: GrantFiled: January 24, 2013Date of Patent: June 24, 2014Assignee: Medtronic, Inc.Inventors: Rahul Gupta, Steven M. Goetz, Maciej T. Lazarewicz, Gabriela C. Molnar, Dwight E. Nelson, Jianping Wu
-
Patent number: 8751007Abstract: The disclosure is directed to techniques for shifting between two electrode combinations. An amplitude of a first electrode combination is incrementally decreased while an amplitude of a second, or subsequent, electrode combination is concurrently incrementally increased. Alternatively, an amplitude of the first electrode combination is maintained at a target amplitude level while the amplitude of the second electrode combination is incrementally increased. The stimulation pulses of the electrode combinations are delivered to the patient interleaved in time. In this manner, the invention provides for a smooth, gradual shift from a first electrode combination to a second electrode combination, allowing the patient to maintain a continual perception of stimulation. The shifting techniques described herein may be used during programming to shift between different electrode combinations to find an efficacious electrode combination.Type: GrantFiled: October 3, 2011Date of Patent: June 10, 2014Assignee: Medtronic, Inc.Inventors: Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Gary W. King, Kenneth T. Heruth, Roy L. Testerman, Michael T. Lee, Nathan A. Torgerson, Joseph J. Nolan
-
Patent number: 8744591Abstract: This disclosure describes techniques for obtaining an image of an anatomical implant region where leads associated with an implantable medical device are implanted in a patient, manipulating the image to show lead locations and placements, performing necessary image compression and manipulations, adjusting the image to associate it with information (e.g., patient, metadata, annotations, etc.) useful to a subsequent programmer retrieving the image, and transferring a copy of the captured image to the implantable medical device. The image stored in the implantable medical device may be retrieved at a later time by a user of programmer, where the user can use the image and other associated information to program subsequent therapy.Type: GrantFiled: April 30, 2010Date of Patent: June 3, 2014Assignee: Medtronic, Inc.Inventors: Jon P. Davis, Steven M. Goetz, Nathan A. Torgerson, Wende L. Dewing, Ashish Singal, Lynn A. Davenport, Rajeev M. Sahasrabudhe, Brent A. Huhta
-
Patent number: 8738145Abstract: The disclosure is directed to techniques for shifting between two electrode combinations. An amplitude of a first electrode combination is incrementally decreased while an amplitude of a second, or subsequent, electrode combination is concurrently incrementally increased. Alternatively, an amplitude of the first electrode combination is maintained at a target amplitude level while the amplitude of the second electrode combination is incrementally increased. The stimulation pulses of the electrode combinations are delivered to the patient interleaved in time. In this manner, the invention provides for a smooth, gradual shift from a first electrode combination to a second electrode combination, allowing the patient to maintain a continual perception of stimulation. The shifting techniques described herein may be used during programming to shift between different electrode combinations to find an efficacious electrode combination.Type: GrantFiled: October 3, 2011Date of Patent: May 27, 2014Assignee: Medtronic, Inc.Inventors: Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Gary W. King, Kenneth T. Heruth, Roy L. Testerman, Michael T. Lee, Nathan A. Torgerson, Joseph J. Nolan
-
Patent number: 8725269Abstract: A user may modify a stimulation parameter in a plurality of stimulation programs with a single adjustment. During stimulation therapy, the user, such as a patient, may desire to change a parameter of the plurality of stimulation programs. The patient may press a single button on an external programmer to make the parameter change, or global adjustment, to all of the plurality of stimulation programs. This global adjustment eliminates the need for the patient to navigate through each of the plurality of stimulation programs separately and adjust the parameter. Additionally, changing the plurality of stimulation programs may be desirable for uniform stimulation therapy between programs used by the patient. The external programmer may calculate an appropriate parameter change for each stimulation program to keep parameter ratios equal between the plurality of stimulation programs.Type: GrantFiled: May 18, 2010Date of Patent: May 13, 2014Assignee: Medtronic, Inc.Inventors: Joseph J. Nolan, Ruth E. Bauhahn, Steven M. Goetz
-
Patent number: 8712539Abstract: Techniques that involve application of one or more rules to a “parent” program to generate a plurality of different “child” programs are described. Each of the rules may define a respective electrode configuration modification, and each child program may be a variation of the parent based on a modification of the electrode configuration of the parent according to one of the rules. The systems or devices may generate further generations of child programs from a previous generation child program using the same one or more rules. The child programs may be provided to a user, so that the user may test the efficacy of the new programs, assisting the user in identifying desirable programs. The child programs may be relatively minor variations of the parent program, and the user may “fine tune” a generally desirable parent program by testing the child programs.Type: GrantFiled: April 12, 2006Date of Patent: April 29, 2014Assignee: Medtronic, Inc.Inventors: Steven M. Goetz, Donald R. Johnson, Andrew H. Houchins, Jeffrey T. Keacher, Theodore J. Stone, Kenneth T. Heruth, Gary W. King, Roy L. Testerman
-
Publication number: 20140107731Abstract: The disclosure describes a method and system that allows a user to configure electrical stimulation therapy by defining a three-dimensional (3D) stimulation field. After a stimulation lead is implanted in a patient, a clinician manipulates the 3D stimulation field in a 3D environment to encompass desired anatomical regions of the patient. In this manner, the clinician determines which anatomical regions to stimulate, and the system generates the necessary stimulation parameters. In some cases, a lead icon representing the implanted lead is displayed to show the clinician where the lead is relative to the 3D anatomical regions of the patient.Type: ApplicationFiled: December 16, 2013Publication date: April 17, 2014Applicant: Medtronic, Inc.Inventors: Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Steven M. Goetz, Lynn M. Otten
-
Publication number: 20140107567Abstract: Techniques for remotely titrating a therapy delivered using an implantable medical device system are disclosed. An implantable medical device delivers therapy according to a first program. The system collects patient data relating to at least one of an efficacy of, or side effects resulting from, the delivered therapy, and transmits the patient data to a remote network device. A clinician may then analyze the patient data and determine if changes to the therapy are warranted. The clinician may then transmit a programming change, e.g., a modification to the first program or a new, second program, to the implantable medical device system, and the implantable medical device may deliver therapy according to the changed programming. The process of receiving patient data and modifying the therapy programming may be repeated multiple times until the therapy is adequately titrated, e.g., until the patient data indicates adequate efficacy and/or acceptable side effects.Type: ApplicationFiled: December 20, 2013Publication date: April 17, 2014Applicant: Medtronic, Inc.Inventor: Steven M. Goetz