Patents by Inventor Steven M. Goetz
Steven M. Goetz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8538538Abstract: This disclosure describes delivery of omnipolar electrical stimulation with an external electrical stimulator. Omnipolar electrical stimulation may involve stimulation with an electrode carried on the housing of an implantable medical device (IMD) while substantially simultaneously delivering stimulation via one or more implanted electrodes having the same polarity as the electrode on the housing. An external medical device (EMD) may simulate the IMD housing electrode with an electrode separate from the electrodes carried on leads implanted near target tissue. This electrode may be an external electrode carried on the external housing of the EMD or an external patch electrode. Alternatively, the electrode may be an implantable electrode coupled to the EMD. The conductivity of the external or implantable electrode may also be optimized to approximate the conductivity of the IMD housing electrode. This electrode coupled to the EMD may be utilized during trial stimulation or chronic, external, stimulation.Type: GrantFiled: July 1, 2010Date of Patent: September 17, 2013Assignee: Medtronic, Inc.Inventors: Steven M. Goetz, Nathan A. Torgerson
-
Patent number: 8527059Abstract: Example techniques involve generating test stimulation programs based upon specific patient feedback to guide the programming process for stimulation therapy. The patient describes positive effects and adverse effects of the test stimulation by listing and/or rating specific types of effects, both positive and adverse, and the location of each effect. In this manner, a programming device, i.e. a programmer, uses the feedback to generate subsequent test stimulation programs. Initially, programs with unipolar electrode configurations are tested, but the programmer may generate bipolar electrode configurations to test if the patient rates the unipolar electrode combinations poorly. After the stimulation programs are tested and rated, the programmer sorts the tested programs based upon the feedback and presents the tested programs to the user. The user selects the best tested program to use for chronic stimulation therapy.Type: GrantFiled: August 29, 2011Date of Patent: September 3, 2013Assignee: Medtronic, Inc.Inventors: Delight D. DeMulling, Debbie A. McConnell, Steven M. Goetz, Cari Herman, Wende L. Dewing
-
Patent number: 8452415Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. A programmer is configured to generate an electrical field model from selected stimulation parameters and patient anatomy data. The electrical field model indicates how the electrical field propagation would occur in the patient during therapy. In addition, the programmer may be configured to generate an activation field model from the electrical field model and a neuron model. The activation field indicates which neurons within the electrical field will be activated during the therapy. Either of these field models may be presented to the user via a user interface that also displays a representation of the lead implanted within the patient. The user interface may allow the user to adjust the stimulation therapy by manipulating displayed field or activation model representations.Type: GrantFiled: October 31, 2006Date of Patent: May 28, 2013Assignee: Medtronic, Inc.Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand
-
Patent number: 8447413Abstract: Techniques for configuring electrical stimulation therapy utilizing one or more stimulation intensity values are described. In one example, a method includes receiving a stimulation intensity value that corresponds to an equal intensity function; determining a pulse width value and a pulse amplitude value based on the equal intensity function; and controlling delivery of electrical stimulation pulses with the determined pulse width value and amplitude value to a patient. A stimulation intensity value may correspond to a plurality of paired pulse width and amplitude values having substantially the same intensity. For example, the plurality of paired pulse width and amplitude values may activate a substantially equal volume of tissue when a stimulation pulse with the paired values is delivered.Type: GrantFiled: April 29, 2008Date of Patent: May 21, 2013Assignee: Medtronic, Inc.Inventors: Richard T. Stone, Steven M. Goetz, Gregory F. Molnar, Gabriela C. Miyazawa, Martin T. Gerber
-
Patent number: 8406890Abstract: In one example, a device includes a telemetry module configured to retrieve graphics processing data from a device that is not configured to perform a rendering process using the graphics processing data and that is associated with delivering therapy to a therapy target of a patient, and a control unit configured to apply the graphics processing data while performing the rendering process to generate an image of an anatomical feature of the patient, wherein the anatomical feature comprises the therapy target for an implantable medical device, and to cause a display unit of a user interface to display the image, wherein the image of the anatomical feature is specific to the patient. The graphics processing data may include a list of vertices or a transform to be applied to a non-patient-specific anatomical atlas. The data may also include a location of a therapy element of the implantable medical device.Type: GrantFiled: April 14, 2011Date of Patent: March 26, 2013Assignee: Medtronic, Inc.Inventor: Steven M. Goetz
-
Patent number: 8380321Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.Type: GrantFiled: October 31, 2006Date of Patent: February 19, 2013Assignee: Medtronic, Inc.Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand
-
Patent number: 8364272Abstract: A programming system allows a user to program therapy parameter values for therapy delivered by a medical device by specifying a desired therapeutic outcome. In an example, the programming system presents a model of a brain network associated with a patient condition to the user. The model may be a graphical representation of a network of anatomical structures of the brain associated with the patient condition and may indicate the functional relationship between the anatomical structures. Using the model, the user may define a desired therapeutic outcome associated with the condition, and adjust excitatory and/or inhibitory effects of the stimulation on the anatomical structures. The system may determine therapy parameter values for therapy delivered to the patient based on the user input.Type: GrantFiled: April 30, 2010Date of Patent: January 29, 2013Assignee: Medtronic, Inc.Inventor: Steven M. Goetz
-
Patent number: 8355783Abstract: Techniques for performing lead functionality tests, e.g., lead impedance tests, for implantable electrical leads are described. In some of the described embodiments, an implantable medical device determines whether a patient is in a target activity state, e.g., an activity state in which lead impedance testing will be unobtrusive, such as when a patient is asleep, or capture information of particular interest, such as when the patient is active, in a particular posture, or changing postures. The implantable medical device performs the lead functionality test based on this determination. Additionally, in some embodiments, the implantable medical device may group a plurality of measurements for a single lead functionality test into a plurality of sessions, and perform the measurement sessions interleaved with delivery of therapeutic stimulation.Type: GrantFiled: October 9, 2009Date of Patent: January 15, 2013Assignee: Medtronic, Inc.Inventors: Steven M. Goetz, Nathan A. Torgerson, Michael T. Lee
-
Patent number: 8352043Abstract: An implantable medical device is capable of delivering the therapeutic output to the patient. A controller, programmable by a medical professional, is operatively coupled to the implantable medical device to, in part, program the therapeutic output to be delivered to the patient. The controller has an interface allowing the medical professional to select an amount of the therapeutic output to be delivered to the patient in at least one of the series of discrete timer intervals. However, the therapeutic output deliver to the patient is dependant upon the clock time to which the infusion device. In certain situations the infusion device clock time may have inaccuracies that grow over time. The clock time can be reset by the infusion programmer but a method must be in place to determine and account for resetting the infusion device clock time that controls when the therapy will be delivered.Type: GrantFiled: July 13, 2009Date of Patent: January 8, 2013Assignee: Medtronic, Inc.Inventors: Steven M. Goetz, Jiaying Shen, Emem D. Akpan
-
Patent number: 8352039Abstract: This disclosure describes techniques for programming stimulation therapy programs according to therapy targets (e.g., symptoms or areas of pain) in a patient to which they are applied. Several programs can be programmed for each therapy target, stored on an implantable medical device, and retrieved later by a programmer to modify, edit, delete, create, and/or select a therapy program for each of the therapy targets. Each therapy target is independent from the other therapy targets, and a user can select or change a program under one therapy target without affecting programs under the other therapy targets. During programming, a user can specify parameters for each program applicable to only that program, and can specify parameters for each therapy target applicable to every program associated with that therapy target. The organization of programs into slots and the selection of a program in each slot may be manual or automated.Type: GrantFiled: January 6, 2011Date of Patent: January 8, 2013Assignee: Medtronic, Inc.Inventors: Jon P. Davis, Steven M. Goetz, Nathan A. Torgerson, Wende L. Dewing, Ashish Singal, Lynn A. Davenport, Rajeev M. Sahasrabudhe
-
Publication number: 20120316619Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.Type: ApplicationFiled: August 23, 2012Publication date: December 13, 2012Applicant: MEDTRONIC, INC.Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand
-
Patent number: 8321808Abstract: The disclosure is directed to a user interface with a menu that facilitates stimulation therapy programming. The user interface displays a representation of the electrical leads implanted in the patient and at least one menu with icons that the user can use to adjust the stimulation therapy. The user may drag one or more field shapes from a field shape selection menu onto the desired location relative to the electrical leads. A manipulation tool menu may also allow the user to adjust the field shapes placed on the electrical leads, which represent the stimulation region. The programmer that includes the user interface then generates electrical stimulation parameter values for the stimulator to deliver stimulation according to the field shapes or field shape groups defined/located by the user. The field shapes may represent different types of stimulation representations, such as current density, activation functions, and neuron models.Type: GrantFiled: December 6, 2007Date of Patent: November 27, 2012Assignee: Medtronic, Inc.Inventors: Steven M. Goetz, Jeffrey T. Keacher, Rajeev Sahasrabudhe, Wende L. Dewing, Jon P. Davis, John Rondoni, Gabriela C. Miyazawa, Gary W. King
-
Publication number: 20120277621Abstract: An implantable nerve stimulator is implanted in a patient near a nerve target. The implantable nerve stimulator has a plurality of electrodes through which stimulation is provided to the nerve target. The relative location of the nerve target and the electrodes may be determined by applying stimulation to the nerves via each of the electrodes, determining an effect of the stimulation for each of the electrodes, and mapping a location of the nerve relative to the electrodes based on the effect of the stimulation for each of the electrodes.Type: ApplicationFiled: April 26, 2012Publication date: November 1, 2012Applicant: MEDTRONIC, INC.Inventors: Martin T. Gerber, Steven M. Goetz, Christopher Poletto
-
Publication number: 20120277823Abstract: Prophylactic stimulation and abortive electrical stimulation are delivered to a cranial nerve, including, e.g. an occipital or trigeminal nerve to treat symptoms of various conditions, including, e.g. occipital neuralgia or migraines.Type: ApplicationFiled: April 26, 2012Publication date: November 1, 2012Applicant: Medtronic,Inc.Inventors: Martin T. Gerber, Steven M. Goetz, Christopher Poletto
-
Publication number: 20120277670Abstract: In some examples, a burr hole cap assembly includes one or more markers that indicate a rotational orientation of a therapy delivery member relative to the burr hole cap assembly, where the therapy delivery member extends through an opening defined by the burr hole cap assembly. In addition, in some examples, the burr hole cap assembly includes a feature that indicates the rotational orientation of the therapy delivery member after the therapy delivery member is implanted in the patient. The feature can include the one or more markers in some examples.Type: ApplicationFiled: April 19, 2012Publication date: November 1, 2012Applicant: Medtronic, Inc.Inventors: Steven M. Goetz, Mark J. Holle, Ashish Singal, Spencer M. Bondhus
-
Publication number: 20120277833Abstract: Techniques and systems for determining a head position of a patient and controlling delivery of electrical stimulation to a target stimulation site based on the determined head position are described. In some examples, movement of the head of the patient may result in movement of a lead, through which the electrical stimulation may be delivered, relative to the target stimulation site. Thus, controlling delivery of the electrical stimulation based on the head position may improve the efficiency and efficacy of the electrical stimulation therapy.Type: ApplicationFiled: April 26, 2012Publication date: November 1, 2012Applicant: MEDTRONIC, INC.Inventors: Martin T. Gerber, Christopher Poletto, Steven M. Goetz
-
Patent number: 8295938Abstract: An apparatus including a processor configured to selectively load a first operating system that controls general purpose computer functionality of the apparatus; and a second operating system different from the first operating system. The second operating system controls medical device programming functionality of the apparatus, enabling the apparatus to program a medical device including at least one implantable component.Type: GrantFiled: December 4, 2007Date of Patent: October 23, 2012Assignee: Medtronic, Inc.Inventors: Steven M. Goetz, Touby A. Drew, Jeffrey T. Keacher
-
Publication number: 20120265271Abstract: In one example, a device includes a telemetry module configured to retrieve graphics processing data from a device that is not configured to perform a rendering process using the graphics processing data and that is associated with delivering therapy to a therapy target of a patient, and a control unit configured to apply the graphics processing data while performing the rendering process to generate an image of an anatomical feature of the patient, wherein the anatomical feature comprises the therapy target for an implantable medical device, and to cause a display unit of a user interface to display the image, wherein the image of the anatomical feature is specific to the patient. The graphics processing data may include a list of vertices or a transform to be applied to a non-patient-specific anatomical atlas. The data may also include a location of a therapy element of the implantable medical device.Type: ApplicationFiled: April 14, 2011Publication date: October 18, 2012Applicant: Medtronic, Inc.Inventor: Steven M. Goetz
-
Patent number: 8287520Abstract: Techniques for testing integrity of various elements of implantable medical device systems are described. Some embodiments automatically test the integrity of one or more system elements in response to detecting an event. Examples of events in response to which an integrity test may be performed include the patient being within a target activity state, a symptomatic event experienced by a patient, an external impact on the patient that exceeds a damage threshold, or an indication that the patient is receiving inappropriate therapy. Some embodiments automatically test integrity in response to failure to autonomously detect an event, which may be indicated by input from a patient. An implantable lead carrying electrodes or a therapeutic substance delivery element, such as a catheter, are examples of system elements for which integrity may be tested in some embodiments.Type: GrantFiled: April 10, 2008Date of Patent: October 16, 2012Assignee: Medtronic, Inc.Inventors: Touby A. Drew, Steven M. Goetz
-
Patent number: 8255060Abstract: The disclosure is directed to a user interface with a menu that facilitates stimulation therapy programming. The user interface displays a representation of the electrical leads implanted in the patient and at least one menu with icons that the user can use to adjust the stimulation therapy. The user may drag one or more field shapes from a field shape selection menu onto the desired location relative to the electrical leads. A manipulation tool menu may also allow the user to adjust the field shapes placed on the electrical leads, which represent the stimulation region. The programmer that includes the user interface then generates electrical stimulation parameter values for the stimulator to deliver stimulation according to the field shapes or field shape groups defined/located by the user. The field shapes may represent different types of stimulation representations, such as current density, activation functions, and neuron models.Type: GrantFiled: December 6, 2007Date of Patent: August 28, 2012Assignee: Medtronic, Inc.Inventors: Steven M. Goetz, Jeffrey T. Keacher, Rajeev Sahasrabudhe, Wende L. Dewing, Jon P. Davis, John Rondoni, Gabriela C. Miyazawa, Gary W. King