Patents by Inventor Steven M. Goetz

Steven M. Goetz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8380321
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: February 19, 2013
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand
  • Patent number: 8364272
    Abstract: A programming system allows a user to program therapy parameter values for therapy delivered by a medical device by specifying a desired therapeutic outcome. In an example, the programming system presents a model of a brain network associated with a patient condition to the user. The model may be a graphical representation of a network of anatomical structures of the brain associated with the patient condition and may indicate the functional relationship between the anatomical structures. Using the model, the user may define a desired therapeutic outcome associated with the condition, and adjust excitatory and/or inhibitory effects of the stimulation on the anatomical structures. The system may determine therapy parameter values for therapy delivered to the patient based on the user input.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: January 29, 2013
    Assignee: Medtronic, Inc.
    Inventor: Steven M. Goetz
  • Patent number: 8355783
    Abstract: Techniques for performing lead functionality tests, e.g., lead impedance tests, for implantable electrical leads are described. In some of the described embodiments, an implantable medical device determines whether a patient is in a target activity state, e.g., an activity state in which lead impedance testing will be unobtrusive, such as when a patient is asleep, or capture information of particular interest, such as when the patient is active, in a particular posture, or changing postures. The implantable medical device performs the lead functionality test based on this determination. Additionally, in some embodiments, the implantable medical device may group a plurality of measurements for a single lead functionality test into a plurality of sessions, and perform the measurement sessions interleaved with delivery of therapeutic stimulation.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: January 15, 2013
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Nathan A. Torgerson, Michael T. Lee
  • Patent number: 8352043
    Abstract: An implantable medical device is capable of delivering the therapeutic output to the patient. A controller, programmable by a medical professional, is operatively coupled to the implantable medical device to, in part, program the therapeutic output to be delivered to the patient. The controller has an interface allowing the medical professional to select an amount of the therapeutic output to be delivered to the patient in at least one of the series of discrete timer intervals. However, the therapeutic output deliver to the patient is dependant upon the clock time to which the infusion device. In certain situations the infusion device clock time may have inaccuracies that grow over time. The clock time can be reset by the infusion programmer but a method must be in place to determine and account for resetting the infusion device clock time that controls when the therapy will be delivered.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: January 8, 2013
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Jiaying Shen, Emem D. Akpan
  • Patent number: 8352039
    Abstract: This disclosure describes techniques for programming stimulation therapy programs according to therapy targets (e.g., symptoms or areas of pain) in a patient to which they are applied. Several programs can be programmed for each therapy target, stored on an implantable medical device, and retrieved later by a programmer to modify, edit, delete, create, and/or select a therapy program for each of the therapy targets. Each therapy target is independent from the other therapy targets, and a user can select or change a program under one therapy target without affecting programs under the other therapy targets. During programming, a user can specify parameters for each program applicable to only that program, and can specify parameters for each therapy target applicable to every program associated with that therapy target. The organization of programs into slots and the selection of a program in each slot may be manual or automated.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: January 8, 2013
    Assignee: Medtronic, Inc.
    Inventors: Jon P. Davis, Steven M. Goetz, Nathan A. Torgerson, Wende L. Dewing, Ashish Singal, Lynn A. Davenport, Rajeev M. Sahasrabudhe
  • Publication number: 20120316619
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
    Type: Application
    Filed: August 23, 2012
    Publication date: December 13, 2012
    Applicant: MEDTRONIC, INC.
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand
  • Patent number: 8321808
    Abstract: The disclosure is directed to a user interface with a menu that facilitates stimulation therapy programming. The user interface displays a representation of the electrical leads implanted in the patient and at least one menu with icons that the user can use to adjust the stimulation therapy. The user may drag one or more field shapes from a field shape selection menu onto the desired location relative to the electrical leads. A manipulation tool menu may also allow the user to adjust the field shapes placed on the electrical leads, which represent the stimulation region. The programmer that includes the user interface then generates electrical stimulation parameter values for the stimulator to deliver stimulation according to the field shapes or field shape groups defined/located by the user. The field shapes may represent different types of stimulation representations, such as current density, activation functions, and neuron models.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: November 27, 2012
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Jeffrey T. Keacher, Rajeev Sahasrabudhe, Wende L. Dewing, Jon P. Davis, John Rondoni, Gabriela C. Miyazawa, Gary W. King
  • Publication number: 20120277670
    Abstract: In some examples, a burr hole cap assembly includes one or more markers that indicate a rotational orientation of a therapy delivery member relative to the burr hole cap assembly, where the therapy delivery member extends through an opening defined by the burr hole cap assembly. In addition, in some examples, the burr hole cap assembly includes a feature that indicates the rotational orientation of the therapy delivery member after the therapy delivery member is implanted in the patient. The feature can include the one or more markers in some examples.
    Type: Application
    Filed: April 19, 2012
    Publication date: November 1, 2012
    Applicant: Medtronic, Inc.
    Inventors: Steven M. Goetz, Mark J. Holle, Ashish Singal, Spencer M. Bondhus
  • Publication number: 20120277621
    Abstract: An implantable nerve stimulator is implanted in a patient near a nerve target. The implantable nerve stimulator has a plurality of electrodes through which stimulation is provided to the nerve target. The relative location of the nerve target and the electrodes may be determined by applying stimulation to the nerves via each of the electrodes, determining an effect of the stimulation for each of the electrodes, and mapping a location of the nerve relative to the electrodes based on the effect of the stimulation for each of the electrodes.
    Type: Application
    Filed: April 26, 2012
    Publication date: November 1, 2012
    Applicant: MEDTRONIC, INC.
    Inventors: Martin T. Gerber, Steven M. Goetz, Christopher Poletto
  • Publication number: 20120277833
    Abstract: Techniques and systems for determining a head position of a patient and controlling delivery of electrical stimulation to a target stimulation site based on the determined head position are described. In some examples, movement of the head of the patient may result in movement of a lead, through which the electrical stimulation may be delivered, relative to the target stimulation site. Thus, controlling delivery of the electrical stimulation based on the head position may improve the efficiency and efficacy of the electrical stimulation therapy.
    Type: Application
    Filed: April 26, 2012
    Publication date: November 1, 2012
    Applicant: MEDTRONIC, INC.
    Inventors: Martin T. Gerber, Christopher Poletto, Steven M. Goetz
  • Publication number: 20120277823
    Abstract: Prophylactic stimulation and abortive electrical stimulation are delivered to a cranial nerve, including, e.g. an occipital or trigeminal nerve to treat symptoms of various conditions, including, e.g. occipital neuralgia or migraines.
    Type: Application
    Filed: April 26, 2012
    Publication date: November 1, 2012
    Applicant: Medtronic,Inc.
    Inventors: Martin T. Gerber, Steven M. Goetz, Christopher Poletto
  • Patent number: 8295938
    Abstract: An apparatus including a processor configured to selectively load a first operating system that controls general purpose computer functionality of the apparatus; and a second operating system different from the first operating system. The second operating system controls medical device programming functionality of the apparatus, enabling the apparatus to program a medical device including at least one implantable component.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: October 23, 2012
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Touby A. Drew, Jeffrey T. Keacher
  • Publication number: 20120265271
    Abstract: In one example, a device includes a telemetry module configured to retrieve graphics processing data from a device that is not configured to perform a rendering process using the graphics processing data and that is associated with delivering therapy to a therapy target of a patient, and a control unit configured to apply the graphics processing data while performing the rendering process to generate an image of an anatomical feature of the patient, wherein the anatomical feature comprises the therapy target for an implantable medical device, and to cause a display unit of a user interface to display the image, wherein the image of the anatomical feature is specific to the patient. The graphics processing data may include a list of vertices or a transform to be applied to a non-patient-specific anatomical atlas. The data may also include a location of a therapy element of the implantable medical device.
    Type: Application
    Filed: April 14, 2011
    Publication date: October 18, 2012
    Applicant: Medtronic, Inc.
    Inventor: Steven M. Goetz
  • Patent number: 8287520
    Abstract: Techniques for testing integrity of various elements of implantable medical device systems are described. Some embodiments automatically test the integrity of one or more system elements in response to detecting an event. Examples of events in response to which an integrity test may be performed include the patient being within a target activity state, a symptomatic event experienced by a patient, an external impact on the patient that exceeds a damage threshold, or an indication that the patient is receiving inappropriate therapy. Some embodiments automatically test integrity in response to failure to autonomously detect an event, which may be indicated by input from a patient. An implantable lead carrying electrodes or a therapeutic substance delivery element, such as a catheter, are examples of system elements for which integrity may be tested in some embodiments.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: October 16, 2012
    Assignee: Medtronic, Inc.
    Inventors: Touby A. Drew, Steven M. Goetz
  • Patent number: 8255060
    Abstract: The disclosure is directed to a user interface with a menu that facilitates stimulation therapy programming. The user interface displays a representation of the electrical leads implanted in the patient and at least one menu with icons that the user can use to adjust the stimulation therapy. The user may drag one or more field shapes from a field shape selection menu onto the desired location relative to the electrical leads. A manipulation tool menu may also allow the user to adjust the field shapes placed on the electrical leads, which represent the stimulation region. The programmer that includes the user interface then generates electrical stimulation parameter values for the stimulator to deliver stimulation according to the field shapes or field shape groups defined/located by the user. The field shapes may represent different types of stimulation representations, such as current density, activation functions, and neuron models.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: August 28, 2012
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Jeffrey T. Keacher, Rajeev Sahasrabudhe, Wende L. Dewing, Jon P. Davis, John Rondoni, Gabriela C. Miyazawa, Gary W. King
  • Patent number: 8233990
    Abstract: A selection of parameter configurations for a neurostimulator using decision trees may be employed by a programming device to allow a clinician or other user to select parameter configurations, and then program an implantable neurostimulator to deliver therapy using the selected parameter configurations. The programming device executes a parameter configuration search algorithm to guide the clinician in selection of parameter configurations. The search algorithm relies on a decision tree to identify optimum parameter configurations. A decision tree is useful in classifying observations in a data set based upon one or more attributes or fields within the data. The data set includes parameter configurations matched with observed ratings of efficacy on patients of a similar indication. The learned attribute, on which classification occurs, will be the optimum parameter configuration for a set of rated configurations used to produce the classification.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: July 31, 2012
    Assignee: Medtronic, Inc.
    Inventor: Steven M. Goetz
  • Patent number: 8195294
    Abstract: Method, controller and system for an implantable medical device capable of delivering therapeutic stimulation through a plurality of electrodes. A control module is operable to conduct a plurality of measurements of impedance values creating a plurality of measured impedance values for a plurality of selected sets of individual ones of the plurality of electrodes based on a plurality of active parameters. The control module conducts the plurality of measurements of impedance values in a plurality of stages in which at least one of said plurality of active parameters is varied between individual ones of the plurality of stages.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: June 5, 2012
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Todd V. Smith, Nathan A. Torgerson, Warren W. Ball
  • Publication number: 20120136409
    Abstract: Techniques that involve application of one or more rules to a “parent” program to generate a plurality of different “child” programs are described. Each of the rules may define a respective electrode configuration modification, and each child program may be a variation of the parent based on a modification of the electrode configuration of the parent according to one of the rules. The systems or devices may generate further generations of child programs from a previous generation child program using the same one or more rules. The child programs may be provided to a user, so that the user may test the efficacy of the new programs, assisting the user in identifying desirable programs. The child programs may be relatively minor variations of the parent program, and the user may “fine tune” a generally desirable parent program by testing the child programs.
    Type: Application
    Filed: December 19, 2011
    Publication date: May 31, 2012
    Inventors: Steven M. Goetz, Donald R. Johnson, Andrew H. Houchins, Jeffrey T. Keacher, Theodore J. Stone, Kenneth T. Heruth, Gary W. King, Roy L. Testerman
  • Patent number: 8180129
    Abstract: In general, the disclosure is related to electrode-to-lead association using post-implant imaging. An image analysis unit may calculate distances between representations of electrodes in an electronic image and identify groups based on the calculated distances. Each identified group may include a plurality of electrode representations. The distance between a first electrode representation and a second electrode representation may be substantially a same distance between the second electrode representation and a third electrode representation. A characterization unit may determine one or more lead types based on the identified groups.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: May 15, 2012
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Andrew Ng
  • Patent number: 8160328
    Abstract: In general, the disclosure is related to characterization of implanted electrical stimulation electrode arrays using post-implant imaging. The electrode arrays may be carried by implanted leads. Characterization of implanted electrode arrays may include identification of the type or types of leads implanted within a patient and/or determination of positions of the implanted leads or electrodes carried by the leads relative to one another or relative to anatomical structures within the patient. In addition, the disclosure relates to techniques for specifying or modifying patient therapy parameters based on the characterization of the implanted electrode arrays.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: April 17, 2012
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Wende L. Dewing, Andrew Ng