Patents by Inventor Steven M. Goetz
Steven M. Goetz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8700157Abstract: System, telemetry head and method for programming an implantable medical device adapted to provide a therapeutic output to a patient, the implantable medical device being programmable through a telemetry interface. A telemetry head is adapted for transcutaneous communication with the implantable medical device through the telemetry interface when the telemetry head is positioned with respect to the implantable medical device. A computing device has computing processing power and a user interface linked with the telemetry head. The computing device processes the computing instructions associated with the implantable medical device. The computing device supplies the user interface based, at least in part, on the computing instructions associated with the implantable medical device. The telemetry head receives programming instructions from the computing device and provides the programming instructions to the implantable medical device using the transcutaneous telemetry interface.Type: GrantFiled: April 29, 2005Date of Patent: April 15, 2014Assignee: Medtronic, Inc.Inventors: Steven M. Goetz, Duane Bourget
-
Patent number: 8694115Abstract: A programming device used to program delivery of therapy to a patient by a medical device, such as an implantable neurostimulator or pump, maintains or accesses a programming history for the patient. The programming history may take the form of a record of programs, e.g., combinations of therapy parameters, tested during one or more prior programming sessions. The programming device may analyze, or otherwise use the programming history to provide guidance information to a user, such as a clinician, which may assist the user in more quickly identifying one or more desirable programs during a current programming session.Type: GrantFiled: July 20, 2005Date of Patent: April 8, 2014Assignee: Medtronic, Inc.Inventors: Steven M. Goetz, Michael T. Lee
-
Publication number: 20140088666Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.Type: ApplicationFiled: September 16, 2013Publication date: March 27, 2014Applicant: Medtronic, Inc.Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand
-
Publication number: 20140081354Abstract: This disclosure describes techniques for combining an image of a region defined by the user to receive stimulation therapy with an image of representation of leads which will deliver the therapy to the defined region, and importing the combined image on an implantable medical device connected to the leads that will deliver the stimulation therapy. During the process of combining the images, the user manipulates one or both of the images to combine the image such that the leads are placed for accurate therapy delivery. In some examples where more than one region is to receive stimulation therapy, each region can have a different image and/or a different set of leads associated therewith, and a combined image of each region may be produced, manipulated, and imported on the implantable medical device.Type: ApplicationFiled: November 20, 2013Publication date: March 20, 2014Applicant: Medtronic, Inc.Inventors: Jon P. Davis, Steven M. Goetz, Ashish Singal, Lynn A. Davenport, Dennis J. Bourget, Rajeev M. Sahasrabudhe, Brent A. Huhta, Shanthi Kandikonda, Jason D. Rahn
-
Patent number: 8666506Abstract: Techniques for selecting electrode combinations for stimulation therapy are described. The techniques include selecting one or more electrode combinations based on information associating a plurality of electrode combinations with at least one value of a therapy metric. The therapy metric comprises a quantifiable result of delivery of stimulation, and may be generated computer modeling of delivery of stimulation via the electrode combinations. In one embodiment, a clinician may deliver stimulation via a baseline electrode combination, receive patient feedback to the baseline electrode combination, select a therapy metric based on the patient feedback, and select additional electrode combinations based on the selected therapy metric and the information associating the electrode combinations with therapy metric values.Type: GrantFiled: June 7, 2007Date of Patent: March 4, 2014Assignee: Medtronic, Inc.Inventors: Gary W. King, Steven M. Goetz, Kevin K. Tidemand, Wilbert A. Wesselink, Gabriela C. Miyazawa, Jordan J. Greenberg
-
Publication number: 20140058292Abstract: A system for use in managing a neuromodulation therapy includes an ultrasound transducer array controlled by a control unit to deliver ultrasound waveforms for causing modulation of neural tissue in a patient. The system acquires data indicating a response to the modulation, analyzes the acquired data to determine correlation data between a response to the modulation and an ultrasound control parameter, and reports the correlation data to enable identification of at least one therapy parameter to be used to deliver a neuromodulation therapy to the patient by a therapy delivery system.Type: ApplicationFiled: January 24, 2013Publication date: February 27, 2014Applicant: Medtronic, Inc.Inventors: Jamu Alford, Steven M. Goetz, Lothar Krinke, Mark S. Lent, Erik R. Scott, Xuan K. Wei, John D. Welter
-
Patent number: 8649872Abstract: A programmer allows a clinician to identify combinations of electrodes from within an electrode set implanted in a patient that enable delivery of desirable neurostimulation therapy by an implantable medical device. The programmer executes an electrode combination search algorithm to select combinations of electrodes to test in a non-random order. According to algorithms consistent with the invention, the programmer may first identify a position of a first cathode for subsequent combinations, and then select electrodes from the set to test with the first cathode as anodes or additional cathodes based on the proximity of the electrodes to the first cathode. The programmer may store information for each combination tested, and the information may facilitate the identification of desirable electrode combinations by the clinician. The clinician may create neurostimulation therapy programs that include identified desirable program combinations.Type: GrantFiled: December 2, 2011Date of Patent: February 11, 2014Assignee: Medtronic, Inc.Inventors: Michael T. Lee, Steven M. Goetz, Nathan A. Torgerson
-
Patent number: 8630715Abstract: Techniques that involve application of one or more rules to a “parent” program to generate a plurality of different “child” programs are described. Each of the rules may define a respective electrode configuration modification, and each child program may be a variation of the parent based on a modification of the electrode configuration of the parent according to one of the rules. The systems or devices may generate further generations of child programs from a previous generation child program using the same one or more rules. The child programs may be provided to a user, so that the user may test the efficacy of the new programs, assisting the user in identifying desirable programs. The child programs may be relatively minor variations of the parent program, and the user may “fine tune” a generally desirable parent program by testing the child programs.Type: GrantFiled: December 19, 2011Date of Patent: January 14, 2014Assignee: Medtronic, Inc.Inventors: Steven M. Goetz, Donald R. Johnson, Andrew H. Houchins, Jeffrey T. Keacher, Theodore J. Stone, Kenneth T. Heruth, Gary W. King, Roy L. Testerman
-
Publication number: 20140005748Abstract: A programming-device user interface may include multiple levels of abstraction for programming treatment settings. A stimulation zone-programming interface may be at a highest level of abstraction and may include idealized stimulation zones. A field strength-programming interface may be at a middle level of abstraction and may include electromagnetic field-strength patterns generated by the stimulation zones, and/or electrode settings, and a depiction of how the electromagnetic fields interact with each other. An electrode-programming interface may be at a lowest level of abstraction and may depict treatment settings at an electrodes-view level. These interfaces may include a display of a stimulatable area of the patient's body. The display may include a depiction of leads and/or the underlying physiology, such as a depiction of a portion of a spine. Algorithms map treatment settings from one level of abstraction to settings at one or more other levels of abstraction.Type: ApplicationFiled: September 3, 2013Publication date: January 2, 2014Applicant: Medtronic, Inc.Inventor: Steven M. Goetz
-
Patent number: 8620452Abstract: Techniques for selecting electrode combinations for stimulation therapy include delivering stimulation via each of at least five combination groups. A first group of electrode combinations is characterized by the presence of a caudal anode. A second group of electrode combinations is characterized by the presence of a rostral anode. A third group of electrode combinations is characterized by the presence of a single anode above and a single anode below the cathode(s) of the combination. A fourth group of electrode combinations is characterized by the presence of multiple anodes above and below the cathode(s) of the combination. A fifth group of electrode combinations is characterized by the presence of transverse anodes. A sixth group of electrode combination is characterized by at least one off-center cathode. One or more preferred electrode combinations groups, and/or a number of leads to implant within the patient, may by selected based on patient feedback.Type: GrantFiled: June 7, 2007Date of Patent: December 31, 2013Assignee: Medtronic, Inc.Inventors: Gary W. King, Gabriela C. Miyazawa, Jordan J. Greenberg, Steven M. Goetz
-
Patent number: 8615299Abstract: Techniques for remotely titrating a therapy delivered using an implantable medical device system are disclosed. An implantable medical device delivers therapy according to a first program. The system collects patient data relating to at least one of an efficacy of, or side effects resulting from, the delivered therapy, and transmits the patient data to a remote network device. A clinician may then analyze the patient data and determine if changes to the therapy are warranted. The clinician may then transmit a programming change, e.g., a modification to the first program or a new, second program, to the implantable medical device system, and the implantable medical device may deliver therapy according to the changed programming. The process of receiving patient data and modifying the therapy programming may be repeated multiple times until the therapy is adequately titrated, e.g., until the patient data indicates adequate efficacy and/or acceptable side effects.Type: GrantFiled: September 29, 2008Date of Patent: December 24, 2013Assignee: Medtronic, Inc.Inventor: Steven M. Goetz
-
Patent number: 8612024Abstract: The disclosure describes a method and system that allows a user to configure electrical stimulation therapy by defining a three-dimensional (3D) stimulation field. After a stimulation lead is implanted in a patient, a clinician manipulates the 3D stimulation field in a 3D environment to encompass desired anatomical regions of the patient. In this manner, the clinician determines which anatomical regions to stimulate, and the system generates the necessary stimulation parameters. In some cases, a lead icon representing the implanted lead is displayed to show the clinician where the lead is relative to the 3D anatomical regions of the patient.Type: GrantFiled: October 31, 2006Date of Patent: December 17, 2013Assignee: Medtronic, Inc.Inventors: Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Steven M. Goetz, Lynn M. Otten
-
Patent number: 8612055Abstract: A fluid delivery system comprises a pump configured to deliver a therapeutic agent to a patient, a memory storing a therapy program defining the delivery of the therapeutic agent to the patient by the pump and a default infusion schedule based on the therapy program, and a processor configured to control the pump to deliver the therapeutic agent to the patient according to the therapy program, to determine an error condition that prevents the pump from continuing to deliver therapy according to the therapy program, and, upon determination of the error condition, to control the pump to deliver the therapeutic agent to the patient according to the default infusion schedule.Type: GrantFiled: April 16, 2010Date of Patent: December 17, 2013Assignee: Medtronic, Inc.Inventors: Irfan Z. Ali, Steven M. Goetz, David C. Ullestad, Emem D. Akpan, Mark D. Salzwedel, Jiaying Shen
-
Patent number: 8571677Abstract: This disclosure describes techniques that support delivering electrical stimulation via an electrode on a housing of an implantable medical device (IMD) while substantially simultaneously delivering electrical stimulation via one or more electrodes, having the same polarity as the electrode on the housing, on one or more leads engaged to the IMD. The stimulation may be constant current-based or constant voltage-based stimulation in the form of pulses or continuous waveforms. Delivery of stimulation via both a housing anode and one or more lead anodes, for example, may allow a user to control current paths between the housing electrode and the lead electrode(s) in a relative manner to achieve different electric or stimulation field shapes.Type: GrantFiled: January 29, 2010Date of Patent: October 29, 2013Assignee: Medtronic, Inc.Inventors: Nathan A. Torgerson, Steven M. Goetz
-
Patent number: 8560080Abstract: Techniques are described, for medical devices that deliver electrical stimulation therapy, for controlling a transition from an initial stimulation location or initial stimulation shape to a user-specified target stimulation location or target stimulation shape in order to limit the rate of change of stimulation. One example method includes receiving, via a programmer for an electrical stimulator, user input indicating a target stimulation zone, and controlling the electrical stimulator to transition electrical stimulation from an initial stimulation zone to the target stimulation zone via one or more intermediate stimulation zones.Type: GrantFiled: June 8, 2011Date of Patent: October 15, 2013Assignee: Medtronic, Inc.Inventors: Steven M. Goetz, Rajeev M. Sahasrabudhe, Jon P. Davis, Brent A. Huhta, Ashish Singal
-
Publication number: 20130268019Abstract: In one example, the disclosure relates to a method comprising receiving at least one electrical stimulation parameter value defining electrical stimulation for delivery via one or more electrodes to a tissue site, and determining, via one or more processors, a volume of sub-activation threshold impact for tissue from the delivery of the electrical stimulation to the tissue site.Type: ApplicationFiled: January 24, 2013Publication date: October 10, 2013Applicant: Medtronic, Inc.Inventors: Rahul Gupta, Steven M. Goetz, Maciej T. Lazarewicz, Gabriela C. Molnar, Dwight E. Nelson, Jianping Wu
-
Patent number: 8543217Abstract: The disclosure describes a method and system that generates stimulation parameters by selecting one or more stimulation parameters according to a stimulation field defined by a user. The system includes a memory that stores a plurality of stimulation templates for multiple electrode configurations of an electrical lead. A processor selects one or more volumetric stimulation templates that best match, e.g., fill, the three-dimensional stimulation field defined by the clinician. Each stimulation template is associated with a set of stimulation parameters that can be used to deliver stimulation therapy to a patient.Type: GrantFiled: October 31, 2006Date of Patent: September 24, 2013Assignee: Medtronic, Inc.Inventors: Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Steven M. Goetz, Lynn M. Otten
-
Patent number: 8543202Abstract: This disclosure describes delivery of omnipolar electrical stimulation with an external electrical stimulator. Omnipolar electrical stimulation may involve stimulation with an electrode carried on the housing of an implantable medical device (IMD) while substantially simultaneously delivering stimulation via one or more implanted electrodes having the same polarity as the electrode on the housing. An external medical device (EMD) may simulate the IMD housing electrode with an electrode separate from the electrodes carried on leads implanted near target tissue. This electrode may be an external electrode carried on the external housing of the EMD or an external patch electrode. Alternatively, the electrode may be an implantable electrode coupled to the EMD. The conductivity of the external or implantable electrode may also be optimized to approximate the conductivity of the IMD housing electrode. This electrode coupled to the EMD may be utilized during trial stimulation or chronic, external, stimulation.Type: GrantFiled: July 1, 2010Date of Patent: September 24, 2013Inventors: Steven M. Goetz, Nathan A. Torgerson
-
Patent number: 8538527Abstract: A programming-device user interface may include multiple levels of abstraction for programming treatment settings. A stimulation zone-programming interface may be at a highest level of abstraction and may include idealized stimulation zones. A field strength-programming interface may be at a middle level of abstraction and may include electromagnetic field-strength patterns generated by the stimulation zones, and/or electrode settings, and a depiction of how the electromagnetic fields interact with each other. An electrode-programming interface may be at a lowest level of abstraction and may depict treatment settings at an electrodes-view level. These interfaces may include a display of a stimulatable area of the patient's body. The display may include a depiction of leads and/or the underlying physiology, such as a depiction of a portion of a spine. Algorithms map treatment settings from one level of abstraction to settings at one or more other levels of abstraction.Type: GrantFiled: November 5, 2009Date of Patent: September 17, 2013Assignee: Medtronic, Inc.Inventor: Steven M. Goetz
-
Patent number: 8538549Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.Type: GrantFiled: August 23, 2012Date of Patent: September 17, 2013Assignee: Medtronic, Inc.Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand