Patents by Inventor Steven M. Zuniga

Steven M. Zuniga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210053183
    Abstract: A carrier head for chemical mechanical polishing includes a base assembly and a membrane assembly connected to the base assembly. The membrane assembly includes a membrane support, an inner membrane secured to the membrane support, wherein the inner membrane forms a plurality of individually pressurizable inner chambers between an upper surface of the membrane and the membrane support, and an outer membrane secured to the membrane support and extending below the inner membrane, the outer membrane having an inner surface and an outer surface, wherein the outer membrane defines a lower pressurizable chamber between the inner surface of the outer membrane and a lower surface of the inner membrane, wherein the inner surface is positioned for contact by a lower surface of the inner membrane upon pressurization of one or more of the plurality of chambers, and wherein the outer surface is configured to contact a substrate.
    Type: Application
    Filed: December 11, 2019
    Publication date: February 25, 2021
    Inventors: Steven M. Zuniga, Jay Gurusamy, Andrew J. Nagengast
  • Publication number: 20210053178
    Abstract: A carrier head for chemical mechanical polishing includes a housing for attachment to a drive shaft, a membrane assembly beneath the housing with a space between the housing and the membrane assembly defining a pressurizable chamber, and a sensor in the housing configured to measure a distance from the sensor to the membrane assembly.
    Type: Application
    Filed: December 6, 2019
    Publication date: February 25, 2021
    Inventors: Steven M. Zuniga, Jay Gurusamy
  • Publication number: 20210053182
    Abstract: A carrier head for a chemical mechanical polishing apparatus includes a carrier body, an outer membrane assembly, an annular segmented chuck, and an inner membrane assembly. The outer membrane assembly is supported from the carrier body and defines a first plurality of independently pressurizable outer chambers. The annular segmented chuck supported below the outer membrane assembly, and includes a plurality of concentric rings that are independently vertically movable by respective pressurizable chambers of the outer membrane assembly. At least two of the rings having passages therethrough to suction-chuck a substrate to the chuck. The inner membrane assembly is supported from the carrier body and is surrounded by an innermost ring of the plurality of concentric rings of the chuck. The inner membrane assembly defines a second plurality of independently pressurizable inner chambers and has a lower surface to contact the substrate.
    Type: Application
    Filed: November 19, 2019
    Publication date: February 25, 2021
    Inventors: Steven M. Zuniga, Jay Gurusamy
  • Publication number: 20200398399
    Abstract: A retaining ring can be shaped by machining or lapping the bottom surface of the ring to form a shaped profile in the bottom surface. The bottom surface of the retaining ring can include flat, sloped and curved portions. The lapping can be performed using a machine that dedicated for use in lapping the bottom surface of retaining rings. During the lapping the ring can be permitted to rotate freely about an axis of the ring. The bottom surface of the retaining ring can have curved or flat portions.
    Type: Application
    Filed: September 3, 2020
    Publication date: December 24, 2020
    Inventors: Hung Chih Chen, Steven M. Zuniga, Charles C. Garretson, Douglas R. McAllister, Jian Lin, Stacy Meyer, Sidney P. Huey, Jeonghoon Oh, Trung T. Doan, Jeffrey P. Schmidt, Martin S. Wohlert, Kerry F. Hughes, James C. Wang, Danny Cam Toan Lu, Romain Beau De Lamenie, Venkata R. Balagani, Aden Martin Allen, Michael Jon Fong
  • Publication number: 20200376700
    Abstract: Embodiments of the present disclosure generally relate to methods of manufacturing polishing platens for use on a chemical mechanical polishing (CMP) system and polishing platens formed therefrom. A method of manufacturing a polishing includes positioning a polishing platen on a support of a manufacturing system. The manufacturing system includes the support and a cutting tool facing there towards. Here, the polishing platen includes a cylindrical metal body having a polymer layer disposed on a surface thereof and the polymer layer has a thickness of about 100 ?m or more. The method further includes removing at least a portion of the polymer layer using the cutting tool to form a polishing pad-mounting surface. Beneficially, the method may be used to form a pad-mounting surface having a desired flatness or shape, such as a concave or convex shape.
    Type: Application
    Filed: May 27, 2020
    Publication date: December 3, 2020
    Inventors: Bum Jick KIM, Danielle LOI, Jay GURUSAMY, Steven M. ZUNIGA
  • Patent number: 10766117
    Abstract: A retaining ring can be shaped by machining or lapping the bottom surface of the ring to form a shaped profile in the bottom surface. The bottom surface of the retaining ring can include flat, sloped and curved portions. The lapping can be performed using a machine that dedicated for use in lapping the bottom surface of retaining rings. During the lapping the ring can be permitted to rotate freely about an axis of the ring. The bottom surface of the retaining ring can have curved or flat portions.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: September 8, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Hung Chih Chen, Steven M. Zuniga, Charles C. Garretson, Douglas R. McAllister, Jian Lin, Stacy Meyer, Sidney P. Huey, Jeonghoon Oh, Trung T. Doan, Jeffrey P. Schmidt, Martin S. Wohlert, Kerry F. Hughes, James C. Wang, Danny Cam Toan Lu, Romain Beau De Lamenie, Venkata R. Balagani, Aden Martin Allen, Michael Jon Fong
  • Publication number: 20200276686
    Abstract: A carrier head for chemical mechanical polishing includes a base, an actuator, a substrate mounting surface, and a retainer. The retainer includes an inner section and an outer section connected by a flexure. A bottom of the inner section of the retainer provides an inner portion of a lower surface configured to contact a polishing pad. An inner surface of the inner section extends upwardly from an inner edge of the lower surface to circumferentially surround the substrate mounting surface. The inner section of the retainer is positioned to receive a controllable load from the actuator and is vertically movable relative to the base. A bottom of the outer section of the retainer provides an outer portion of the lower surface. The outer section of the retainer is vertically fixed to the base. The inner section of the retainer is vertically movable relative to the outer section of the retainer.
    Type: Application
    Filed: February 24, 2020
    Publication date: September 3, 2020
    Inventors: Andrew J. Nagengast, Steven M. Zuniga
  • Publication number: 20200246841
    Abstract: A substrate cleaning device may include a chamber body configured to hold a substrate and a brush assembly. The brush assembly may include a first roller, a second roller, and a belt extending between the first roller and the second roller. At least one of the first roller and the second roller may be movable between a first position where the belt contacts a first surface of a substrate disposed in the chamber body and a second position where the belt is spaced from the first surface. Other substrate cleaning devices and methods of cleaning substrates are disclosed.
    Type: Application
    Filed: January 30, 2020
    Publication date: August 6, 2020
    Inventors: Steven M. Zuniga, Jay Gurusamy, Jagan Rangarajan
  • Publication number: 20200234995
    Abstract: A wafer processing device may include a wafer exchanger including two or more blades, each of the two or more blades may be configured to receive a wafer, the two or more blades may be rotatable about an axis on a single horizontal plane, and the two or more blades may be movable between at least a load cup and a robot access location; wherein the load cup may include a wafer station that is vertically moveable relative a blade located in the load cup and may be configured to remove a wafer from a blade located in the load cup and place a wafer on a blade located in the load cup. Other devices, load cups and methods are also disclosed herein.
    Type: Application
    Filed: January 9, 2020
    Publication date: July 23, 2020
    Inventors: Jagan Rangarajan, Edward Golubovsky, Shaun Van Der Veen, Justin Ho Kuen Wong, Steven M. Zuniga
  • Patent number: 10702971
    Abstract: A flexible membrane for use in a carrier head has a generally circular main portion with a lower surface, an annular outer portion for connection to a base assembly, and an annular flap extending from the main portion on a side opposite the lower surface for connection to the base assembly. At least one surface of the flap has a surface texture to prevent adhesion.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: July 7, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Jeonghoon Oh, Tsz-Sin Siu, Hung Chih Chen, Andrew J. Nagengast, Steven M. Zuniga, Thomas B. Brezoczky
  • Publication number: 20200206866
    Abstract: A polishing system includes a platen having a top surface to support a main polishing pad. The platen is rotatable about an axis of rotation that passes through approximately the center of the platen. An annular flange projects radially outward from the platen to support an outer polishing pad. The annular flange has an inner edge secured to and rotatable with the platen and vertically fixed relative to the top surface of the platen. The annular flange is vertically deflectable such that an outer edge of the annular flange is vertically moveable relative to the inner edge. An actuator applies pressure to an underside of the annular flange in an angularly limited region, and a carrier head holds a substrate in contact with the polishing pad and is movable to selectively position a portion of the substrate over the outer polishing pad.
    Type: Application
    Filed: December 16, 2019
    Publication date: July 2, 2020
    Inventors: Jay Gurusamy, Steven M. Zuniga, Jeonghoon Oh
  • Publication number: 20200156206
    Abstract: A polishing system is provided, including a carrier with an offset distance. The offset distance allows a shifted carrier head to cover more surface area of the polishing surface. The offset distance effectively provides an additional rotation of the carrier head about the axis, which allows for a greater area traversed on the polishing surface, improving chemical mechanical polishing uniformity on the substrate.
    Type: Application
    Filed: November 20, 2019
    Publication date: May 21, 2020
    Inventors: Steven M. ZUNIGA, Jay GURUSAMY, Bum Jick KIM, Danielle LOI
  • Publication number: 20200114487
    Abstract: A polishing system includes a platen having a top surface to support an annular polishing pad, a carrier head to hold a substrate in contact with the annular polishing pad, a support structure extending above the platen and to which one or more polishing system components are secured, and a support post. The platen is rotatable about an axis of rotation that passes through approximately a center of the platen. The first support post has an upper end coupled to and supporting the support structure and a lower portion that is supported on the platen or that extends through an aperture in the platen.
    Type: Application
    Filed: December 6, 2019
    Publication date: April 16, 2020
    Inventors: Paul D. Butterfield, Thomas H. Osterheld, Jeonghoon Oh, Shou-Sung Chang, Steven M. Zuniga, Fred C. Redeker
  • Publication number: 20200114489
    Abstract: Some implementations of a retaining ring has an inner surface having a first portion formed of multiple planar facets and a second portion that adjoins the first portion along a boundary and includes a frustoconical surface that is sloped downwardly from outside in. Some implementations of the retaining ring have a crenellated or serpentine inner surface, and/or an inner surface with alternating region of different surface properties or different tilt angles.
    Type: Application
    Filed: December 9, 2019
    Publication date: April 16, 2020
    Inventors: Steven Mark Reedy, Simon Yavelberg, Jeonghoon Oh, Steven M. Zuniga, Andrew J. Nagengast, Samuel Chu-Chiang Hsu, Gautam Shashank Dandavate
  • Publication number: 20200101576
    Abstract: A method and apparatus for a separable assembly in a platen assembly is provided. The two components of the separable assembly couple together through the first coupling member and the second coupling member, and the coupling is magnetic. The web assembly and hub assembly are placed or decoupled via the methods as described above. The separable components of the assembly reduce the cost and time of removing the entire platen assembly from the CMP system when maintenance or repair is to be performed.
    Type: Application
    Filed: August 7, 2019
    Publication date: April 2, 2020
    Inventors: Jay GURUSAMY, David J. LISCHKA, Steven M. ZUNIGA
  • Publication number: 20200086456
    Abstract: Embodiments of the present disclosure generally provide methods, polishing systems with computer readable medium having the methods stored thereon, to facilitate consistent tensioning of a polishing article disposed on a web-based polishing system. In one embodiment, a substrate processing method includes winding a used portion of a polishing article onto a take-up roll of a polishing system by rotating a first spindle having the take-up roll disposed thereon; measuring, using an encoder wheel, a polishing article advancement length of the used portion of the polishing article wound onto the take-up roll; determining a tensioning torque to apply to a supply roll using the measured polishing article advancement length; and tensioning the polishing article by applying the tensioning torque to the supply roll.
    Type: Application
    Filed: August 27, 2019
    Publication date: March 19, 2020
    Inventors: Dmitry SKLYAR, Jeonghoon OH, Gerald J. ALONZO, Jonathan DOMIN, Steven M. ZUNIGA, Jay GURUSAMY
  • Patent number: 10562147
    Abstract: A polishing system includes a platen having a top surface, an annular polishing pad supported on the platen, a carrier head to hold a substrate in contact with the annular polishing pad, a support structure from which the carrier head is suspended and which is configured to move the hold the carrier head laterally across the polishing pad, and a controller. The platen is rotatable about an axis of rotation that passes through approximately the center of the platen, and the inner edge of the annular polishing pad is positioned around the axis of rotation. The controller is configured to cause the support structure to position the carrier head such that a portion of the substrate overhangs the inner edge of the annular polishing pad while the substrate is contacting the polishing pad.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: February 18, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Paul D. Butterfield, Thomas H. Osterheld, Jeonghoon Oh, Shou-Sung Chang, Steven M. Zuniga, Fred C. Redeker
  • Publication number: 20200043756
    Abstract: A cleaning module for cleaning a wafer comprises a wafer gripping device configured to support a wafer in a vertical orientation and comprises a catch cup and a gripper assembly. The catch cup comprises a wall that has an annular inner surface that defines a processing region and has an angled portion that is symmetric about a central axis of the wafer gripping device. The gripper assembly comprises a first plate assembly, a second plate assembly, a plurality of gripping pin, and a plurality of loading pin. The gripping pins are configured to grip a wafer during a cleaning process and the loading pins are configured to grip the wafer during a loading and unloading process. The cleaning module further comprises a sweep arm coupled to a nozzle mechanism configured to deliver liquids to the front and back side of the wafer.
    Type: Application
    Filed: August 6, 2019
    Publication date: February 6, 2020
    Inventors: Jagan RANGARAJAN, Adrian BLANK, Edward GOLUBOVSKY, Balasubramaniam Coimbatore JAGANATHAN, Steven M. ZUNIGA, Ekaterina MIKHAYLICHENKO, Michael A. ANDERSON, Jonathan P. DOMIN
  • Patent number: 10500695
    Abstract: Some implementations of a retaining ring has an inner surface having a first portion formed of multiple planar facets and a second portion that adjoins the first portion along a boundary and includes a frustoconical surface that is sloped downwardly from outside in. Some implementations of the retaining ring have a crenellated or serpentine inner surface, and/or an inner surface with alternating region of different surface properties or different tilt angles.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: December 10, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Steven Mark Reedy, Simon Yavelberg, Jeonghoon Oh, Steven M. Zuniga, Andrew J. Nagengast, Samuel Chu-Chiang Hsu, Gautam Shashank Dandavate
  • Publication number: 20190099857
    Abstract: Embodiments herein relate to a retaining ring for use in a polishing process. The retaining ring includes an annular body having an upper surface and a lower surface. An inner surface is connected to the upper surface and the lower surface. The inner surface includes one or more surfaces that are used to retain a substrate during processing. The one or more surfaces have an angle relative to a central axis of the retaining ring. The inner surface also includes a plurality of facets. Channels are disposed within the retaining ring to allow passage of a polishing fluid from an inner surface to an outer surface of the retaining ring disposed opposite of the inner surface.
    Type: Application
    Filed: October 2, 2018
    Publication date: April 4, 2019
    Inventors: Jeonghoon OH, Charles C. GARRETSON, Eric LAU, Andrew NAGENGAST, Steven M. ZUNIGA, Edwin C. SUAREZ, Huanbo ZHANG, Brian J. BROWN