Patents by Inventor Su Lu

Su Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120292249
    Abstract: The present invention provides a composite membrane comprising a porous base membrane and a polyamide coating disposed on said porous base membrane, said polyamide coating comprising a C3-C8 cyclic carbonyl compound and a C1-C8 amide compound, said amide compound comprising at least one N—H moiety. In addition the present invention provides a method of preparing a composite membrane comprising contacting under interfacial polymerization conditions an organic solution comprising a polyacid halide with an aqueous solution comprising a polyamine, said contacting being carried out on a surface of a porous base membrane, said organic solution further comprising a C3-C8 cyclic carbonyl compound, said aqueous solution comprising a C1-C8 amide compound, said amide compound comprising at least one N—H moiety.
    Type: Application
    Filed: August 3, 2012
    Publication date: November 22, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Hua Wang, Su Lu, Hua Li, Steven Thomas Rice, Joseph Anthony Suriano, Bing Zhang, Chen Wang, Lawrence Charles Costa, Steven John Harrold, David Allen Olson, Wenqing Peng
  • Publication number: 20120196140
    Abstract: A method is provided, comprising: copolymerizing a monomer comprising at least two amide groups, a monomer of formula (a) and a sulfonic acid or salt monomer, wherein R1 is CH3 or H. A polymer made by the method, a membrane and an electrode comprising the polymer are provided.
    Type: Application
    Filed: April 6, 2012
    Publication date: August 2, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Zhigang Deng, Hai Yang, Liping Zheng, Su Lu, Lin Chen, Hui Liu, Wei Cai, Xianguo Yu
  • Patent number: 8211335
    Abstract: A method is provided, comprising: copolymerizing a monomer comprising at least two amide groups, a monomer of formula (a) and a sulfonic acid or salt monomer, wherein R1 is CH3 or H. A polymer made by the method is provided. A method for coating an electrode is provided, comprising: providing an electrode; providing a solution of a free radical initiator, a monomer comprising at least two amide groups, a monomer of formula (a) and a sulfonic acid or salt monomer; wetting the electrode with the solution; and heating the wetted electrode; whereby the monomer comprising at least two amide groups, the monomer of formula (a), and the sulfonic acid or salt monomer are copolymerized; wherein R1 is CH3 or H. An electrode coated by the method is provided.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: July 3, 2012
    Assignee: General Electric Company
    Inventors: Zhigang Deng, Hai Yang, Liping Zheng, Su Lu, Lin Chen, Hui Liu, Wei Cai, Xianguo Yu
  • Publication number: 20120152851
    Abstract: The invention relates to a polymer comprising structural units of formula and formula wherein R1, R2, R5 and R6 are independently hydrogen, a methyl group, or —COOH, only one of R1 and R2 or R5 and R6 is —COOH; R3 and R7 are independently hydrogen, or a methyl group; R4 is —COOH, —CONH2 or —OH, when R4 is —OH, R1, R2 and R3 are respectively hydrogen; and R8 is —COO, —CONH, or —O—, when R8 is —O—, R5, R6 and R7 are respectively hydrogen. Methods for preparing and using the polymer are also described herein.
    Type: Application
    Filed: March 29, 2011
    Publication date: June 21, 2012
    Inventors: Wenqing Peng, Yangang Liang, Shengxia Liu, Larry Neil Lewis, Robert James Perry, Stephen Robert Vasconcellos, Su Lu, Guixi Zhang
  • Publication number: 20120122735
    Abstract: A composition includes a first probe, a first initiator component bonded to the first probe, a second probe, and a second initiator component bonded to the second probe. The first probe and the second probe are capable of binding to a single analyte, and the first initiator component and the second initiator component are capable of forming an initiator when present in proximity to each other and when the first probe and the second probe are bonded to the analyte. An associated kit, device, and method are provided.
    Type: Application
    Filed: March 1, 2007
    Publication date: May 17, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: John Richard Nelson, Bahram Moasser, Anup Sood, Gregory Andrew Grossmann, Su Lu, Zhida Pan, Liangliang Qiang, John Yupeng Gui, Wei Cai, Zhixin Zheng
  • Publication number: 20120122734
    Abstract: A composition includes a first probe and a first initiator bonded to the first probe. The first probe is capable of binding to an analyte and the first initiator is capable of initiating a controlled polymerization reaction. An associated kit, device, and method are provided.
    Type: Application
    Filed: March 1, 2007
    Publication date: May 17, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Su Lu, John Yupeng Gui, Bahram Moasser, Wei Cai, Zhixin Zheng, John Richard Nelson
  • Publication number: 20120122733
    Abstract: The composition includes a first probe and a first initiator bonded to the first probe. The composition further includes a second probe and a second initiator bonded to the second probe. The first probe and the second probe are capable of binding to a single analyte. An associated kit, device, and method are provided.
    Type: Application
    Filed: March 1, 2007
    Publication date: May 17, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Zhida Pan, Su Lu, Liangliang Qiang, John Yupeng Gui, John Richard Nelson, Bahram Moasser, Anup Sood, Gregory Andrew Grossmann, Wei Cai, Zhixin Zheng
  • Patent number: 8025789
    Abstract: An electrochemical method for measuring the concentration of an anionically-charged and non-electroactive polymer in an aqueous solution is provided. The method comprises immobilizing a cationic dye material on an electrically conductive substrate form a working electrode; contacting the working electrode with the aqueous solution including the anionically-charged and non-electroactive polymer to be measured, and transmitting electrical power to the working electrode; measuring a current of the working electrode under a determined electric potential; and calculating a concentration or quantity of the anionically-charged polymer in the aqueous solution according to the measured current of the working electrode.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: September 27, 2011
    Assignee: General Electric Company
    Inventors: Jianyun Liu, Zhixin Zheng, Yangang Liang, Wei Cai, Su Lu, Li Zhang
  • Publication number: 20110090620
    Abstract: The supercapacitor comprises a first electrode, a second electrode, a first ionic carrier configured to contact the first electrode to provide a first ion-conductive pathway for transportation of ions to and from the first electrode, and a first retaining layer configured to retain the first ionic carrier between the first electrode and the first retaining layer. Further, the supercapacitor comprises an electrolyte dispersed between the first and the second electrodes to provide the ions, a first current collector configured to contact the first electrode and a second current collector configured to contact the second electrode. A method for making the supercapacitor is also presented.
    Type: Application
    Filed: May 15, 2009
    Publication date: April 21, 2011
    Inventors: Jianyun Liu, Su Lu, Hai Yang, Wei Cai
  • Patent number: 7915318
    Abstract: A water soluble ROMP catalyst, which has high catalytic efficiency for ring opening metathesis is use in the preparation of polymeric blends for use in monolithic columns. In one embodiments a method for making a polymeric blend is discolosed comprising reaction of a water-soluble ROMP catalyst with a norbornene-substituted cycloolefin polymer or a polynorbornene polymer precursor, and wherein the contacting occurs in an aqueous or polar solvent in the presence of a solid support. In another embodiment a monolithic bed is disclosed comprising the water-soluble ROMP catalyst immobilized on a surface of a solid support. Also disclosed is a monolithic bed comprising: a polymer blend, the polymer blend produced from contacting a water soluble ROMP catalyst with a norbornene-substituted cycloolefin polymer or a polynorbornene polymer precursor; and wherein the contacting occurs in an aqueous or polar solvent in the presence of a solid support.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: March 29, 2011
    Assignee: General Electric Company
    Inventors: Su Lu, Liangliang Qiang, Yanrong Zhu, Zhida Pan
  • Publication number: 20110049430
    Abstract: A method is provided, comprising: copolymerizing a monomer comprising at least two amide groups, a monomer of formula (a) and a sulfonic acid or salt monomer, wherein R1 is CH3 or H. A polymer made by the method is provided. A method for coating an electrode is provided, comprising: providing an electrode; providing a solution of a free radical initiator, a monomer comprising at least two amide groups, a monomer of formula (a) and a sulfonic acid or salt monomer; wetting the electrode with the solution; and heating the wetted electrode; whereby the monomer comprising at least two amide groups, the monomer of formula (a), and the sulfonic acid or salt monomer are copolymerized; wherein R1 is CH3 or H. An electrode coated by the method is provided.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 3, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Zhigang Deng, Hai Yang, Liping Zheng, Su Lu, Lin Chen, Hui Liu, Wei Cai, Xianguo Yu
  • Publication number: 20110015099
    Abstract: The invention is a device comprising a substrate and a material provided on at least a portion of the substrate and having an exposed surface. The exposed surface of the material is non bio-adhesive. The invention further includes a non bio-adhesive material composition and a method of making a device having the same non bio-adhesive surface. The invention further provides a device having a coating of a hydrophobic material. In particular, the hydrophobic material coated portion of the device is resistant to bio-adhesion.
    Type: Application
    Filed: July 15, 2009
    Publication date: January 20, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Mingna Xiong, Bing Zhang, Liping Zheng, Hui Lei, Su Lu, Liming Yu, Lin Chen, Wenqing Peng, Yanrong Zhu
  • Publication number: 20100294984
    Abstract: The invention relates to a method of controlling silica scale in an aqueous system, including adding an effective amount of mixture of a first polymer and a second polymer into the aqueous system, wherein the first polymer and the second polymer each has at least one of a first structural unit derived from any of quaternary ammonium monomer, quaternary phosphonium monomer, and quaternary sulfonium monomer and a second structural unit derived from any of sulfonic acid, sulfuric acid, phosphoric acid, carboxylic acid and any salt thereof, the first polymer bears a first net charge or being neutral, the second polymer bears a second net charge opposite the first net charge or bearing positive net charge when the first polymer is neutral, the first structural unit is from about 1 mol % to about 99 mol % of the mixture.
    Type: Application
    Filed: May 22, 2009
    Publication date: November 25, 2010
    Applicant: General Electric Company
    Inventors: Wenqing Peng, Su Lu, Zhida Pan, Ashok Shankar Shetty, Chihyu Sui, Bing Zhang, Shengxia Liu, Mingna Xiong, Yangang Liang
  • Publication number: 20100297429
    Abstract: The present invention provides a composite membrane comprising a porous base membrane and a polyamide coating disposed on said porous base membrane, said polyamide coating comprising a C3-C8 cyclic carbonyl compound and a C1-C8 amide compound, said amide compound comprising at least one N—H moiety. In addition the present invention provides a method of preparing a composite membrane comprising contacting under interfacial polymerization conditions an organic solution comprising a polyacid halide with an aqueous solution comprising a polyamine, said contacting being carried out on a surface of a porous base membrane, said organic solution further comprising a C3-C8 cyclic carbonyl compound, said aqueous solution comprising a C1-C8 amide compound, said amide compound comprising at least one N—H moiety.
    Type: Application
    Filed: May 22, 2009
    Publication date: November 25, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Hua Wang, Su Lu, Hua Li, Steven Thomas Rice, Joseph Anthony Suriano, Bing Zhang, Chen Wang, Lawrence Charles Costa, Steven John Harrold, David Allen Olson, Wenqing Peng
  • Publication number: 20100266525
    Abstract: A method has been found for the removal of microbial biofilm on surfaces in contact with systems, including but not limited to aqueous systems, which comprises adding to the aqueous system an effective amount of a carbosilane-based surfactant to substantially remove microbial biofilm, from surfaces in aquatic systems, while presenting minimal danger to non-target aquatic organisms at discharge due to their very low discharge concentrations.
    Type: Application
    Filed: April 17, 2009
    Publication date: October 21, 2010
    Inventors: Wilson Kurt WHITEKETTLE, Wenqing Peng, Su Lu, Juan Jiang
  • Patent number: 7813106
    Abstract: An electrode assembly is provided. The assembly includes a chargeable electrode configured to adsorb oppositely charged ions, where the electrode comprises a porous material. The assembly further includes an ion exchange material in contact with the porous material of the chargeable electrode, where the ion exchange material is similarly charged as the chargeable electrode, and where the ion exchange material is permeable to the oppositely charged ions and at least partially impermeable to the similarly charged ions.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: October 12, 2010
    Assignee: General Electric Company
    Inventors: Wei Cai, Chang Wei, Lei Cao, Rihua Xiong, Su Lu, Yu Du, Zhigang Deng
  • Publication number: 20100147707
    Abstract: An electrochemical method for measuring the concentration of an anionically-charged and non-electroactive polymer in an aqueous solution is provided. The method comprises immobilizing a cationic dye material on an electrically conductive substrate form a working electrode; contacting the working electrode with the aqueous solution including the anionically-charged and non-electroactive polymer to be measured, and transmitting electrical power to the working electrode; measuring a current of the working electrode under a determined electric potential; and calculating a concentration or quantity of the anionically-charged polymer in the aqueous solution according to the measured current of the working electrode.
    Type: Application
    Filed: December 17, 2008
    Publication date: June 17, 2010
    Applicant: General Electric Company
    Inventors: Jianyun Liu, Zhixin Zheng, Yangang Liang, Wei Cai, Su Lu, Li Zhang
  • Publication number: 20100147704
    Abstract: An electrochemical device comprises an electrochemical cell. The electrochemical cell comprises a composite cation-exchange member including a conductive base and a cation-exchange material in physical contact with the conductive base, a composite anion-exchange member including a conductive base and an anion-exchange material in physical contact with the conductive base; and a compartment between the composite cation-exchange and anion-exchange members. The compartment comprises an inlet for introducing a feed stream, and an outlet for exiting of an output stream out of the compartment. The electrochemical device comprises a control device configured to transmit an electrical current to the composite cation-exchange and anion-exchange members at a regeneration stage in a manner that the conductive base on the composite cation-exchange member loses electrons and the conductive base on the composite anion-exchange member gains electrons.
    Type: Application
    Filed: December 17, 2008
    Publication date: June 17, 2010
    Applicant: General Electric Company
    Inventors: Rihua Xiong, Wei Cai, Liping Zheng, Hai Yang, Su Lu, Zhigang Deng, Lin Chen
  • Publication number: 20100063200
    Abstract: A water soluble ROMP catalyst, which has high catalytic efficiency for ring opening metathesis is use in the preparation of polymeric blends for use in monolithic columns. In one embodiments a method for making a polymeric blend is discolosed comprising reaction of a water-soluble ROMP catalyst with a norbornene-substituted cycloolefin polymer or a polynorbornene polymer precursor, and wherein the contacting occurs in an aqueous or polar solvent in the presence of a solid support. In another embodiment a monolithic bed is disclosed comprising the water-soluble ROMP catalyst immobilized on a surface of a solid support. Also disclosed is a monolithic bed comprising: a polymer blend, the polymer blend produced from contacting a water soluble ROMP catalyst with a norbornene-substituted cycloolefin polymer or a polynorbornene polymer precursor; and wherein the contacting occurs in an aqueous or polar solvent in the presence of a solid support.
    Type: Application
    Filed: September 9, 2008
    Publication date: March 11, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Su Lu, Liangliang Qiang, Yanrong Zhu, Zhida Pan
  • Publication number: 20100015633
    Abstract: A method includes binding a probe to an analyte present in a sample, wherein the probe comprises a binder bonded to a metal particle that is capable of releasing metal ions when contacted with a reagent solution. The method includes contacting the metal particle with the reagent solution to release the metal ions, and observing an optical signal from the released metal ions to determine a presence or amount of the analyte in the sample. An associated kit is also provided.
    Type: Application
    Filed: July 18, 2008
    Publication date: January 21, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Su Lu, Li Zhu, Zhida Pan, Liangliang Qiang, John Yupeng Gui