Patents by Inventor Subhashish Mukherjee

Subhashish Mukherjee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180226920
    Abstract: Apparatus for communication across a capacitively coupled channel are disclosed herein. An example circuit includes a first plate substantially parallel to a substrate, thereby forming a first capacitance intermediate the first plate and the substrate. A second plate is substantially parallel to the substrate and the first plate, the first plate intermediate the substrate and the second plate. A third plate is substantially parallel to the substrate, thereby forming a second capacitance intermediate the third plate and the substrate. A fourth plate is substantially parallel to the substrate and the third plate, the third plate intermediate the substrate and the fourth plate. An inductor is connected to the first plate and the third plate, the inductor to, in combination with the first capacitance and the second capacitance, form an LC amplifier.
    Type: Application
    Filed: February 8, 2017
    Publication date: August 9, 2018
    Inventors: Subhashish Mukherjee, Kumar Anurag Shrivastava, Sreeram Subramanyam Nasum
  • Publication number: 20180191331
    Abstract: A circuit includes an amplifier having an input that receives an alternating current (AC) waveform and an output that is coupled to a power source via a bias resistor. A bulk acoustic wave (BAW) resonator is coupled in parallel to the bias resistor via the power source and the amplifier output. The BAW resonator and the amplifier output forms a band pass filter to filter the AC waveform received at the amplifier input and to provide a filtered AC waveform at the amplifier output.
    Type: Application
    Filed: December 30, 2016
    Publication date: July 5, 2018
    Inventors: KUMAR ANURAG SHRIVASTAVA, SUBHASHISH MUKHERJEE, MADHULATHA BONU
  • Patent number: 10014844
    Abstract: A circuit includes an amplifier having an input that receives an alternating current (AC) waveform and an output that is coupled to a power source via a bias resistor. A bulk acoustic wave (BAW) resonator is coupled in parallel to the bias resistor via the power source and the amplifier output. The BAW resonator and the amplifier output forms a band pass filter to filter the AC waveform received at the amplifier input and to provide a filtered AC waveform at the amplifier output.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: July 3, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kumar Anurag Shrivastava, Subhashish Mukherjee, Madhulatha Bonu
  • Publication number: 20180183636
    Abstract: Described examples include a method for operating a receiver including receiving an output of an in-phase IF path; receiving an output of a quadrature IF path; measuring a blocker power on a plurality of IF channels on at least one of the in-phase path and the quadrature path within a fraction of a symbol interval; selecting a selected one of the plurality of IF channels having a low blocker power as an image channel; and providing a local oscillator output to the in-phase IF path and quadrature IF path operate corresponding to the image channel, such that a frequency of the local oscillator output is changed within a fraction of the symbol interval.
    Type: Application
    Filed: December 27, 2016
    Publication date: June 28, 2018
    Inventors: Raghu Ganesan, Yogesh Darwhekar, Subhashish Mukherjee
  • Publication number: 20180131545
    Abstract: Methods and apparatus for performing a high speed phase demodulation scheme using a low bandwidth phase-lock loop are disclosed. An example apparatus includes a low bandwidth phase lock loop to lock to a data signal at a first phase, the data signal capable of oscillating at the first phase or a second phase; and output a first output signal at the first phase and a second output signal at the second phase, the first output signal or the second output signal being utilized in a feedback loop of the low bandwidth phase lock loop. The example apparatus further includes a fast phase change detection circuit coupled to the low bandwidth phase lock loop to determine whether the data signal is oscillating at the first phase or the second phase.
    Type: Application
    Filed: January 3, 2018
    Publication date: May 10, 2018
    Inventors: Subhashish Mukherjee, Abhijit Anant Patki, Madhulatha Bonu, Kumar Anurag Shrivastava
  • Publication number: 20180068894
    Abstract: An example integrated circuit die includes: a plurality of lower level conductor layers, a plurality of lower level insulator layers between the plurality of lower level conductor layers, a plurality of lower level vias extending vertically through the lower level insulator layers, a plurality of upper level conductor layers overlying the lower level conductor layers, a plurality of upper level insulator layers between and surrounding the upper level conductor layers, a plurality of upper level vias; at least two scribe seals arranged to form a vertical barrier extending vertically from the semiconductor substrate to a passivation layer at an upper surface of the integrated circuit die; and at least one opening extending vertically through one of the at least two scribe seals and extending through: the upper level conductor layers, the upper level via layers, the lower level conductor layers, and the lower level via layers.
    Type: Application
    Filed: November 4, 2016
    Publication date: March 8, 2018
    Inventors: Subhashish Mukherjee, Raja Selvaraj, Venugopal Gopinathan
  • Patent number: 9893916
    Abstract: Methods and apparatus for performing a high speed phase demodulation scheme using a low bandwidth phase-lock loop are disclosed. An example apparatus includes a low bandwidth phase lock loop to lock to a data signal at a first phase, the data signal capable of oscillating at the first phase or a second phase; and output a first output signal at the first phase and a second output signal at the second phase, the first output signal or the second output signal being utilized in a feedback loop of the low bandwidth phase lock loop.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: February 13, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Subhashish Mukherjee, Abhijit Anant Patki, Madhulatha Bonu, Kumar Anurag Shrivastava
  • Publication number: 20180006856
    Abstract: Methods and apparatus for performing a high speed phase demodulation scheme using a low bandwidth phase-lock loop are disclosed. An example apparatus includes a low bandwidth phase lock loop to lock to a data signal at a first phase, the data signal capable of oscillating at the first phase or a second phase; and output a first output signal at the first phase and a second output signal at the second phase, the first output signal or the second output signal being utilized in a feedback loop of the low bandwidth phase lock loop.
    Type: Application
    Filed: July 1, 2016
    Publication date: January 4, 2018
    Inventors: Subhashish Mukherjee, Abhijit Anant Patki, Madhulatha Bonu, Kumar Anurag Shrivastava
  • Publication number: 20170353157
    Abstract: Methods and apparatus are disclosed to generate an oscillating output signal having a voltage swing greater than a voltage swing across nodes of active devices. An example oscillator includes a tank to generate an oscillating output signal in response receiving an edge of an enable signal; a feedback generator including a first gain stage forming a first feedback loop with the tank, the first feedback loop providing a first charge to maintain the oscillating output signal and a second gain stage forming a second feedback loop with the tank, the second feedback loop providing a second charge to maintain the oscillating output signal, the first and second charges combining with the oscillating output signal to generate a high voltage swing; and an attenuator connected between the tank and the feedback generator to isolate the tank from active components of the feedback generator.
    Type: Application
    Filed: June 3, 2016
    Publication date: December 7, 2017
    Inventors: Subhashish Mukherjee, Kumar Anurag Shrivastava, Madhulatha Bonu
  • Publication number: 20170343589
    Abstract: A reduced-stage feedback-based envelope detector includes, for example, an input rectifier for rectifying a received modulated input signal and an amplifier for receiving the rectified modulated input signal at an input node. The amplifier compares the rectified modulated input signal with a reference signal, filters the rectified modulated input signal at the input node, and generates an envelope detection signal in response to the comparison and the filtering of the rectified modulated input signal. In an embodiment, the gain of the amplifier is independently determined from the bandwidth of the amplifier.
    Type: Application
    Filed: May 24, 2016
    Publication date: November 30, 2017
    Inventors: Subhashish Mukherjee, Anoop Narayan Bhat
  • Publication number: 20170302310
    Abstract: At least some embodiments are directed to a receiver system that comprises a first oscillation module configured to provide oscillating signals of differing frequencies and a second oscillation module configured to provide other oscillating signals of the differing frequencies. The second oscillation module is configured to produce less noise than the first oscillation module. A controller is coupled to the first and second oscillation modules and configured to selectively activate and deactivate each of the first and second oscillation modules based on signal strengths of primary signals received via a wireless medium and based on signal strengths of interference signals received via the wireless medium.
    Type: Application
    Filed: April 13, 2017
    Publication date: October 19, 2017
    Inventors: Subhashish MUKHERJEE, Yogesh DARWHEKAR, Nagaraj V. DIXIT, Raghu GANESAN
  • Patent number: 9722536
    Abstract: Low noise switchable varactors and digital controlled oscillator (DCO) circuitry are presented for creating alternating signals at controlled frequencies, including a first transistor for selectively coupling two capacitors between varactor output nodes when a control signal is in a first state, second and third transistors for selectively coupling first and second internal nodes between the respective capacitors and the first transistor with a third internal node when the control signal is in the first state, and an inverter disconnected from the first and second internal nodes to mitigate phase noise and operable to control the voltage of the third internal node according to the control signal.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: August 1, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Gireesh Rajendran, Rakesh Kumar, Subhashish Mukherjee, Ashish Lachhwani
  • Publication number: 20170180015
    Abstract: In described examples, a first die includes a primary LC tank oscillator having a natural frequency of oscillation to induce a forced oscillation in a secondary LC tank oscillator of a separate second die via a magnetic coupling between the primary LC tank oscillator and the secondary LC tank oscillator.
    Type: Application
    Filed: March 9, 2017
    Publication date: June 22, 2017
    Inventors: Subhashish Mukherjee, Venugopal Gopinathan
  • Patent number: 9634736
    Abstract: In described examples, a method of inductive coupled communications includes providing a first resonant tank (first tank) and a second resonant tank (second tank) tuned to essentially the same resonant frequency, each having antenna coils and switches positioned for changing a Q and a bandwidth of their tank. The antenna coils are separated by a distance that provides near-field communications. The first tank is driven to for generating induced oscillations to transmit a predetermined number of carrier frequency cycles providing data. After the predetermined number of cycles, a switch is activated for widening the bandwidth of the first tank. Responsive to the oscillations in the first tank, the second tank begins induced oscillations. Upon detecting a bit associated with the induced oscillations, a switch is activated for widening the bandwidth of the second tank and a receiver circuit receiving an output of the second tank is reset.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: April 25, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Subhashish Mukherjee, Anoop Bhat, Kumar Anurag Shrivastava
  • Patent number: 9601995
    Abstract: A low power radio frequency envelope detector includes a charging transistor for controlling the charge supplied to an output capacitor. A first input capacitor couples an input signal to a gate of the charging transistor. A second input capacitor couples a first polarity of the input signal to a first diode such that the first diode is operable to couple charge to the first input capacitor and to the gate of the charging transistor in response to a positive excursion of the first polarity of the input signal. A third input capacitor couples a second polarity of the input signal to a second diode coupled in series with the first diode. The first and second diodes are operable to couple charge to the first input capacitor and to the gate of the charging transistor in response to a positive excursion of the first polarity of the input signal.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: March 21, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Subhashish Mukherjee, Kumar Anurag Shrivastava
  • Patent number: 9596008
    Abstract: In apparatus for die-to-die communication, a first die includes at least a first circuit, and a second die includes at least a second circuit. The first die is separated by a fixed distance from the second die. In response to a signal, the first circuit is configured to induce a current in the second circuit via a magnetic coupling between the first circuit and the second circuit.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: March 14, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Subhashish Mukherjee, Venugopal Gopinathan
  • Publication number: 20160359528
    Abstract: In apparatus for die-to-die communication, a first die includes at least a first circuit, and a second die includes at least a second circuit. The first die is separated by a fixed distance from the second die. In response to a signal, the first circuit is configured to induce a current in the second circuit via a magnetic coupling between the first circuit and the second circuit.
    Type: Application
    Filed: August 23, 2016
    Publication date: December 8, 2016
    Inventors: Subhashish Mukherjee, Venugopal Gopinathan
  • Publication number: 20160315670
    Abstract: In described examples, a method of inductive coupled communications includes providing a first resonant tank (first tank) and a second resonant tank (second tank) tuned to essentially the same resonant frequency, each having antenna coils and switches positioned for changing a Q and a bandwidth of their tank. The antenna coils are separated by a distance that provides near-field communications. The first tank is driven to for generating induced oscillations to transmit a predetermined number of carrier frequency cycles providing data. After the predetermined number of cycles, a switch is activated for widening the bandwidth of the first tank. Responsive to the oscillations in the first tank, the second tank begins induced oscillations. Upon detecting a bit associated with the induced oscillations, a switch is activated for widening the bandwidth of the second tank and a receiver circuit receiving an output of the second tank is reset.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 27, 2016
    Inventors: Subhashish Mukherjee, Anoop Bhat, Kumar Anurag Shrivastava
  • Patent number: 9385790
    Abstract: A method of inductive coupled communications includes providing a first resonant tank (first tank) and a second resonant tank (second tank) tuned to essentially the same resonant frequency, each having antenna coils and switches positioned for changing a Q and a bandwidth of their tank. The antenna coils are separated by a distance that provides near-field communications. The first tank is driven to for generating induced oscillations to transmit a predetermined number of carrier frequency cycles providing data. After the predetermined number of cycles, a switch is activated for widening the bandwidth of the first tank. Responsive to the oscillations in the first tank, the second tank begins induced oscillations. Upon detecting a bit associated with the induced oscillations, a switch is activated for widening the bandwidth of the second tank and a receiver circuit receiving an output of the second tank is reset.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: July 5, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Subhashish Mukherjee, Anoop Bhat, Kumar Anurag Shrivastava
  • Publication number: 20160191123
    Abstract: A method of inductive coupled communications includes providing a first resonant tank (first tank) and a second resonant tank (second tank) tuned to essentially the same resonant frequency, each having antenna coils and switches positioned for changing a Q and a bandwidth of their tank. The antenna coils are separated by a distance that provides near-field communications. The first tank is driven to for generating induced oscillations to transmit a predetermined number of carrier frequency cycles providing data. After the predetermined number of cycles, a switch is activated for widening the bandwidth of the first tank. Responsive to the oscillations in the first tank, the second tank begins induced oscillations. Upon detecting a bit associated with the induced oscillations, a switch is activated for widening the bandwidth of the second tank and a receiver circuit receiving an output of the second tank is reset.
    Type: Application
    Filed: December 31, 2014
    Publication date: June 30, 2016
    Inventors: SUBHASHISH MUKHERJEE, ANOOP BHAT, KUMAR ANURAG SHRIVASTAVA