Patents by Inventor Subhashish Mukherjee

Subhashish Mukherjee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160126895
    Abstract: An I converter outputs I sign data and I magnitude data based on received I data. A Q converter outputs Q sign data and Q magnitude data based on received Q data. An I clock generates an I phase based ort the I sign data. A Q clock generates a Q phase based on the Q sign data. An I modulator generates an I magnitude pulse stream based on the I magnitude data. A Q modulator generates a Q magnitude pulse stream based on the Q magnitude data. A digital logic component generates an output signal based on the I phase, the I magnitude pulse stream, the Q phase and the Q magnitude pulse stream. A power amplifier generates an amplified signal based on the output signal.
    Type: Application
    Filed: October 30, 2014
    Publication date: May 5, 2016
    Inventors: Gireesh Rajendran, Rakesh Kumar, Alok Prakask Joshi, Subhashish Mukherjee, Krishnaswamy Thiagarajan, Apu Sivadas
  • Publication number: 20160112006
    Abstract: Low noise switchable varactors and digital controlled oscillator (DCO) circuitry are presented for creating alternating signals at controlled frequencies, including a first transistor for selectively coupling two capacitors between varactor output nodes when a control signal is in a first state, second and third transistors for selectively coupling first and second internal nodes between the respective capacitors and the first transistor with a third internal node when the control signal is in the first state, and an inverter disconnected from the first and second internal nodes to mitigate phase noise and operable to control the voltage of the third internal node according to the control signal.
    Type: Application
    Filed: October 20, 2014
    Publication date: April 21, 2016
    Applicant: Texas Instruments Incorporated
    Inventors: Gireesh Rajendran, Rakesh Kumar, Subhashish Mukherjee, Ashish Lachhwani
  • Publication number: 20150325501
    Abstract: A coupling device provides galvanic isolation using a leadframe that is configured to support two integrated circuit chips in a coplanar manner. Each chip contains an inductive coupling coil. The lead frame includes a set of bond pads for attaching bond wires to couple to the two integrated circuit chips. Two separated die attach pads support the two chips. Each die attach pad is configured to support one of the two integrated circuit chips with a plurality of cantilevered fingers.
    Type: Application
    Filed: May 12, 2014
    Publication date: November 12, 2015
    Applicant: Texas Instruments Incorporated
    Inventors: Benjamin Michael Sutton, Sreenivasan K. Koduri, Subhashish Mukherjee
  • Publication number: 20150138995
    Abstract: According to an aspect of the present disclosure, a baseband signal and a pilot signal are combined for a transmission. The combined signal is then translated to higher frequency band by mixing a local oscillator signal and the combined signal. On the receiver, the pilot signal is used to remove the phase noise in the baseband signal, as both baseband signal and the pilot signal are affected/modified by substantially the same phase noise. In one embodiment, the pilot signal may be selected either centered outside the bandwidth of the base band signal or centered inside the bandwidth of the base band signal with enough guard band around it so that it can be filtered out using filters. The pilot signal is used in a similar fashion to eliminate the effect of the phase noise introduced by the local oscillator present in the tester in testing the receiver device.
    Type: Application
    Filed: November 18, 2013
    Publication date: May 21, 2015
    Applicant: Texas Instruments Incorporated
    Inventors: Shankar Ram NarayanaMoorthy, Ganesan Thiagarajan, Subhashish Mukherjee
  • Publication number: 20150091502
    Abstract: A method of coupling a first port of a single antenna to a first coupling circuit and a second port of the single antenna to a second coupling circuit. The method includes coupling a wireless charging unit to the first coupling unit and coupling an NFC transceiver block to the second coupling circuit. The method further includes isolating the single antenna from the wireless charging unit during a time interval when the NFC transceiver block is operational and isolating the single antenna from the NFC transceiver block during a time interval when the wireless charging unit is operational.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 2, 2015
    Applicant: Texas Instruments Incorporated
    Inventors: Subhashish Mukherjee, Yogesh Darwhekar, Gireesh Rajendran
  • Publication number: 20140357186
    Abstract: In apparatus for die-to-die communication, a first die includes at least a first circuit, and a second die includes at least a second circuit. The first die is separated by a fixed distance from the second die. In response to a signal, the first circuit is configured to induce a current in the second circuit via a magnetic coupling between the first circuit and the second circuit.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 4, 2014
    Inventors: Subhashish Mukherjee, Venugopal Gopinathan
  • Patent number: 8725088
    Abstract: A single-antenna solution is provided for near-field and far-field communication in wireless devices. In an embodiment, a first transceiver block generates a first transmit signal to be transmitted using radiative techniques. A second transceiver block generates a second transmit signal to be transmitted using inductive coupling. The first and second transceiver blocks are coupled to a same antenna for transmitting the first transmit signal using radiative coupling, and the second transmit signal using inductive coupling. The first transceiver block and the second transceiver block operate according to time division multiplexing, and in an embodiment corresponding to an FM transceiver and an NFC transceiver.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 13, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Brian Paul Ginsburg, Gangadhar Burra, Assaf Sella, Subhashish Mukherjee, Gireesh Rajendran, Yogesh Darwhekar, Apu Sivadas
  • Patent number: 8483627
    Abstract: An electronic circuit comprising a transistor-based RF (radio frequency) power amplifier (112) having balanced outputs (172, 176), a transistor-based receiver RF amplifier (116) having balanced inputs (152, 156) ohmically connected to said balanced outputs (172, 176) respectively of said RF power amplifier (112), and a balun (114) having a primary (182, 186) and a secondary (188), said primary (182, 186) having primary connections and a supply connection (185) of said primary (182, 186) intermediate said primary connections and said primary connections ohmically connected both to said balanced outputs (172, 176) of said RF power amplifier (112) respectively and to said balanced inputs (152, 156) of said receiver RF amplifier, thereby to switchlessly couple RF between the balun (114) and the RF power amplifier (112) and switchlessly couple RF between the balun (114) and the receiver RF amplifier (116). Other electronic circuits, processes, devices and systems are disclosed.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: July 9, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Gireesh Rajendran, Apu Sivadas, Subhashish Mukherjee
  • Patent number: 8412136
    Abstract: According to an aspect of the present invention, the magnitude and phase angle of looking-in impedance driven by an amplifier are computed in digital domain during normal operation within a module containing the amplifier. In an embodiment, the computed magnitude and phase angle are used for impedance matching at a node driven by the amplifier. As a result, impedance matching may be obtained even in situations when the impedance changes during operation.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: April 2, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Apu Sivadas, Gireesh Rajendran, Subhashish Mukherjee
  • Patent number: 8345811
    Abstract: A method of achieving reduced modulation range requirement in a Digitally Controlled Oscillator (DCO) which is deployed as part of a DRP (Digital Radio Processor) and tuned to a tuning frequency range having operating-channel center-frequencies, wherein phase difference between consecutive samples is termed as FCW (Frequency Control Word), uses the steps of digitally modifying and limiting the FCW so that the FCW does not exceed known FCW thresholds, e.g., chosen from ?/2, ?/4, ?/8, and redistributing the FCWs while maintaining a cumulative sum of phases and without significant EVM (Error Vector Magnitude) degradation. The FCW threshold can be chosen arbitrarily and need not be in the form of ?/2n. The method uses a FCW limiting algorithm which reduces supply voltage sensitivity of the DCO and enables significant reduction in area of capacitor bank which would be otherwise needed.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: January 1, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Sarma S. Gunturi, Jawaharlal Tangudu, Sthanunathan Ramakrishnan, Jayawardan Janardhanan, Debapriya Sahu, Subhashish Mukherjee
  • Patent number: 8249524
    Abstract: A near field communication (NFC) transceiver contains a transmitter portion to generate a transmit wireless signal, and a receiver portion to receive and process a receive wireless signal. The circuit further contains a shunt capacitor, a switch, and an antenna interface to couple the transmitter portion and the receiver portion to an antenna designed to communicate with external antennas by inductive coupling. The switch couples the shunt capacitor in parallel with the antenna in one operational mode, and decouples the shunt capacitor from the antenna in another operational mode. Transmit and receive performance of the NFC transceiver are enhanced as a result.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: August 21, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Yogesh Darwhekar, Alok Prakash Joshi, Gireesh Rajendran, Subhashish Mukherjee, Apu Sivadas
  • Patent number: 8203384
    Abstract: An amplifier has first and second differential outputs connected to first and second ends of one side of a balun. A second side of the balun, inductively coupled to the first side of the balun, has a center tap that is electrically coupled to a conductive path to a power supply reference node for the amplifier.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: June 19, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Krishnaswamy Thiagarajan, Gireesh Rajendran, Subhashish Mukherjee, Apu Sivadas
  • Patent number: 8195109
    Abstract: A switched power amplifier contained in a circuit is implemented to receive a single-ended input signal and generate a single-ended output signal, the single-ended output signal being a power-amplified version of the single-ended input signal. The switched power amplifier provides high efficiency.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: June 5, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Gireesh Rajendran, Apu Sivadas, Subhashish Mukherjee, Krishnaswamy Thiagarajan
  • Publication number: 20120064826
    Abstract: A near field communication (NFC) transceiver contains a transmitter portion to generate a transmit wireless signal, and a receiver portion to receive and process a receive wireless signal. The circuit further contains a shunt capacitor, a switch, and an antenna interface to couple the transmitter portion and the receiver portion to an antenna designed to communicate with external antennas by inductive coupling. The switch couples the shunt capacitor in parallel with the antenna in one operational mode, and decouples the shunt capacitor from the antenna in another operational mode. Transmit and receive performance of the NFC transceiver are enhanced as a result.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 15, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Yogesh Darwhekar, Alok Prakash Joshi, Gireesh Rajendran, Subhashish Mukherjee, Apu Sivadas
  • Publication number: 20110243120
    Abstract: A single-antenna solution is provided for near-field and far-field communication in wireless devices. In an embodiment, a first transceiver block generates a first transmit signal to be transmitted using radiative techniques. A second transceiver block generates a second transmit signal to be transmitted using inductive coupling. The first and second transceiver blocks are coupled to a same antenna for transmitting the first transmit signal using radiative coupling, and the second transmit signal using inductive coupling. The first transceiver block and the second transceiver block operate according to time division multiplexing, and in an embodiment corresponding to an FM transceiver and an NFC transceiver.
    Type: Application
    Filed: April 5, 2010
    Publication date: October 6, 2011
    Inventors: Brian Paul Ginsburg, Gangadhar Burra, Assaf Sella, Subhashish Mukherjee, Gireesh Rajendran, Yogesh Darwhekar, Apu Sivadas
  • Publication number: 20110237206
    Abstract: A switched power amplifier contained in a circuit is implemented to receive a single-ended input signal and generate a single-ended output signal, the single-ended output signal being a power-amplified version of the single-ended input signal. The switched power amplifier provides high efficiency.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 29, 2011
    Inventors: Gireesh Rajendran, Apu Sivadas, Subhashish Mukherjee, Krishnaswamy Thiagarajan
  • Publication number: 20110171994
    Abstract: Multi-mode transceiver and a circuit for operating the multi-mode transceiver. A multi-mode transceiver includes a first circuit that is configurable to operate as one of a transmitter and a receiver in a first mode, and a second circuit that is configurable to operate as one of the transmitter and the receiver in a second mode. The multi-mode transceiver includes a first element coupled to the first circuit. The multi-mode transceiver includes a second element coupled to the first element and one or more ports. The multi-mode transceiver also includes a first switch, coupled to the second element and to the second circuit, that is configurable to operate the transceiver in at least one of the first mode and the second mode in conjunction with the first element and the second element.
    Type: Application
    Filed: January 8, 2010
    Publication date: July 14, 2011
    Applicant: Texas Instruments Incorporated
    Inventors: Gireesh RAJENDRAN, Timothy Don DAVIS, Apu SIVADAS, Michel FRECHETTE, Thiagarajan KRISHNASWAMY, Salvatore PENNISI, Rakesh KUMAR, Bijit Thakorbhai PATEL, Subhashish MUKHERJEE, Debapriya SAHU
  • Publication number: 20090289721
    Abstract: An electronic circuit comprising a transistor-based RF (radio frequency) power amplifier (112) having balanced outputs (172, 176), a transistor-based receiver RF amplifier (116) having balanced inputs (152, 156) ohmically connected to said balanced outputs (172, 176) respectively of said RF power amplifier (112), and a balun (114) having a primary (182, 186) and a secondary (188), said primary (182, 186) having primary connections and a supply connection (185) of said primary (182, 186) intermediate said primary connections and said primary connections ohmically connected both to said balanced outputs (172, 176) of said RF power amplifier (112) respectively and to said balanced inputs (152, 156) of said receiver RF amplifier, thereby to switchlessly couple RF between the balun (114) and the RF power amplifier (112) and switchlessly couple RF between the balun (114) and the receiver RF amplifier (116). Other electronic circuits, processes, devices and systems are disclosed.
    Type: Application
    Filed: May 5, 2009
    Publication date: November 26, 2009
    Applicant: Texas Instruments Incorporated
    Inventors: Gireesh Rajendran, Apu Sivadas, Subhashish Mukherjee
  • Publication number: 20090252269
    Abstract: A method of achieving reduced modulation range requirement in a Digitally Controlled Oscillator (DCO) which is deployed as part of a DRP (Digital Radio Processor) and tuned to a tuning frequency range having operating-channel center-frequencies, wherein phase difference between consecutive samples is termed as FCW (Frequency Control Word), uses the steps of digitally modifying and limiting the FCW so that the FCW does not exceed known FCW thresholds, e.g., chosen from ?/2, ?/4, ?/8, and redistributing the FCWs while maintaining a cumulative sum of phases and without significant EVM (Error Vector Magnitude) degradation. The FCW threshold can be chosen arbitrarily and need not be in the form of ?/2n. The method uses a FCW limiting algorithm which reduces supply voltage sensitivity of the DCO and enables significant reduction in area of capacitor bank which would be otherwise needed.
    Type: Application
    Filed: April 2, 2008
    Publication date: October 8, 2009
    Inventors: Sarma S. Gunturi, Jawaharlal Tangudu, Sthanunathan Ramakrishnan, Jayawardan Janardhanan, Debapriya Sahu, Subhashish Mukherjee
  • Publication number: 20090201088
    Abstract: According to an aspect of the present invention, the magnitude and phase angle of looking-in impedance driven by an amplifier are computed in digital domain during normal operation within a module containing the amplifier. In an embodiment, the computed magnitude and phase angle are used for impedance matching at a node driven by the amplifier. As a result, impedance matching may be obtained even in situations when the impedance changes during operation.
    Type: Application
    Filed: February 10, 2009
    Publication date: August 13, 2009
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Apu Sivadas, Gireesh Rajendran, Subhashish Mukherjee