Patents by Inventor Subhra Mohapatra

Subhra Mohapatra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210315937
    Abstract: The present application is related to methods of treating ARDS in a subject in need thereof, by administering (a) pioglitazone, or a pharmaceutically acceptable salt thereof, and (b) mesenchymal stromal cells to the subject. Also disclosed herein are methods of treating one or more symptoms of ARDS in a subject in need thereof.
    Type: Application
    Filed: April 7, 2021
    Publication date: October 14, 2021
    Inventors: Subhra Mohapatra, Shyam S. Mohapatra, Mahasweta Das, Andrew McGill, Taylor Martinez, Karthick Mayilsamy
  • Patent number: 11110183
    Abstract: A multifunctional dendrimer nanoparticle and method of treating diseases of the posterior segment of the eye is presented. The functionalized polyamidoamine (PAMAM) dendrimer effectively delivers drugs and/or genes to the posterior eye, thereby providing for the effective, non-invasive, and topical treatment of diseased in the posterior eye. The multifunctional dendrimer nanoparticle has shRNA-encoding DNA and small molecule drug encapsulated cyclodextrin complexed to the outer surface of the dendrimer for delivery to the posterior segment of the eye.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: September 7, 2021
    Assignees: University of South Florida, The United States Government as Represented by the Department of Veterans Affairs
    Inventors: Shyam S. Mohapatra, Subhra Mohapatra, Eleni Markousta
  • Publication number: 20210253422
    Abstract: This invention provides for a RSV-targeted nanoparticle PMN (RTPMN), combining HR2D anti-fusion peptide, and plasmid encoded siRNA against RSV-NS1 and/or RSV-P gene as a safe, effective and inexpensive anti-RSV prophylaxis and/or therapy.
    Type: Application
    Filed: May 21, 2019
    Publication date: August 19, 2021
    Inventors: Eleni Markoutsa, Subhra Mohapatra, Shyam Mohapatra
  • Patent number: 11016062
    Abstract: A novel SH-SAW biosensor capable of non-invasive and touch-free detection of cancer cell viability and growth or proliferation in two-dimensional (2D) and three-dimensional (3D) cell cultures as well as stem cell regeneration as it pertains to cancer cell biology and anti-cancer drug development is presented. The biosensor includes two pairs of resonators including interdigital transducers reflecting fingers to quantify mass loading by the cells in suspension as well as within a tumoroid culture platform. The biosensor can be part of a perfused 3PNS-tumoroid system that is amenable to real-time non-invasive monitoring of the cell proliferation, viability, and multiplexed detection of key physiologic and clinical biomarkers.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: May 25, 2021
    Assignees: University of South Florida, TransGenex Nanobiotech, Inc.
    Inventors: Shyam S. Mohapatra, Subhra Mohapatra, Rasim Oytun Guldiken, Rajesh R. Nair, Tao Wang
  • Patent number: 10813935
    Abstract: Disclosed herein are compositions and methods for treating cancer. Further provided herein are compositions and methods for reducing, inhibiting, or preventing resistance of cancer to tyrosine kinase inhibitors. The methods may include administering an anti-resistance agent such as a CYP51A1 inhibitor or an agonist of miRNA-764 (SEQ ID NO: 4) to a subject. A tyrosine kinase inhibitor may also be administered to the subject in addition to the anti-resistance agent.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: October 27, 2020
    Assignees: TRANSGENEX NANOBIOTECH, INC., University of South Florida
    Inventors: Subhra Mohapatra, Shyam S. Mohapatra, Mark Howell, Rajesh Nair
  • Publication number: 20200141905
    Abstract: A novel SH-SAW biosensor capable of non-invasive and touch-free detection of cancer cell viability and growth or proliferation in two-dimensional (2D) and three-dimensional (3D) cell cultures as well as stem cell regeneration as it pertains to cancer cell biology and anti-cancer drug development is presented. The biosensor includes two pairs of resonators including interdigital transducers reflecting fingers to quantify mass loading by the cells in suspension as well as within a tumoroid culture platform. The biosensor can be part of a perfused 3PNS-tumoroid system that is amenable to real-time non-invasive monitoring of the cell proliferation, viability, and multiplexed detection of key physiologic and clinical biomarkers.
    Type: Application
    Filed: December 20, 2019
    Publication date: May 7, 2020
    Applicants: University of South Florida, TransGenex Nanobiotech, Inc.
    Inventors: Shyam S. Mohapatra, Subhra Mohapatra, Rasim Oytun Guldiken, Rajesh R. Nair, Tao Wang
  • Publication number: 20200061207
    Abstract: A multifunctional dendrimer nanoparticle and method of treating diseases of the posterior segment of the eye is presented. The functionalized polyamidoamine (PAMAM) dendrimer effectively delivers drugs and/or genes to the posterior eye, thereby providing for the effective, non-invasive, and topical treatment of diseased in the posterior eye. The multifunctional dendrimer nanoparticle has shRNA-encoding DNA and small molecule drug encapsulated cyclodextrin complexed to the outer surface of the dendrimer for delivery to the posterior segment of the eye.
    Type: Application
    Filed: August 5, 2019
    Publication date: February 27, 2020
    Applicants: University of South Florida, The United Government as Represented by the Department of Veterans Affair
    Inventors: Shyam S. Mohapatra, Subhra Mohapatra, Eleni Markousta
  • Publication number: 20200049700
    Abstract: Provided are methods of detecting antigens in a sample by methods using a nanoparticle-enhanced enzymatic immune bio sensor. Methods of detecting abnormal kidney function in a subject and methods of detecting cancer in a subject are provided. Also provided are kits for detecting antigens.
    Type: Application
    Filed: April 26, 2018
    Publication date: February 13, 2020
    Inventors: Shyam Mohapatra, Subhra Mohapatra
  • Patent number: 10520472
    Abstract: A novel SH-SAW biosensor capable of non-invasive and touch-free detection of cancer cell viability and growth or proliferation in two-dimensional (2D) and three-dimensional (3D) cell cultures as well as stem cell regeneration as it pertains to cancer cell biology and anti-cancer drug development is presented. The biosensor includes two pairs of resonators including interdigital transducers reflecting fingers to quantify mass loading by the cells in suspension as well as within a tumoroid culture platform. The biosensor can be part of a perfused 3PNS-tumoroid system that is amenable to real-time non-invasive monitoring of the cell proliferation, viability, and multiplexed detection of key physiologic and clinical biomarkers.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: December 31, 2019
    Assignees: University of South Florida, TransGenex Nanobiotech, Inc.
    Inventors: Shyam S. Mohapatra, Subhra Mohapatra, Rasim Oytun Guldiken, Rajesh R. Nair, Tao Wang
  • Publication number: 20190292524
    Abstract: The invention relates to the methods to increase populations of cancer stem cells (CSCs), including human CSCs, using, for example, a FiSS™ (fiber-inspired smart scaffold) platform, a scaffold for cell culture comprising an electrospun mixture of poly(lactic-co-glycolic acid) (PLGA) and a block copolymer of polylactic acid (PLA) and monomethoxypolyethylene glycol (mPEG). As an example, we demonstrated that MCF-7 cells grown on FiSScsc developed into well-formed single-cell tumoroids (SCTs), showing a ˜3-fold increase in the cancer stem cell (CSC) population versus similar-passage cells grown as monolayers. This increase was further potentiated when the first-generation tumoroids were used to grow second- and third-generation tumoroids. Additionally, we scaled-up the cell culturing protocol from, for example, a 96-well plate to, for example, a 6-well plate, with no loss in the induction of CSCs.
    Type: Application
    Filed: October 6, 2017
    Publication date: September 26, 2019
    Inventors: Rajesh NAIR, Mazen HANNA, Subhra MOHAPATRA, Shyam MOHAPATRA, Ryan GREEN
  • Publication number: 20190216855
    Abstract: The present invention pertains to a strategy of selectively targeting oncolytic virotherapy, using either naturally occurring or genetically modified viruses by packaging them in mesenchymal stem cells (MSCs). The present invention concerns MSCs, compositions comprising the MSCs, and methods of using the MSCs for treatment of cancer and for lysing or inducing apoptosis of cancer cells in vitro or in vivo.
    Type: Application
    Filed: September 19, 2017
    Publication date: July 18, 2019
    Inventors: SHYAM S. MOHAPATRA, SUBHRA MOHAPATRA
  • Publication number: 20190033294
    Abstract: Described are methods of screening drugs for cancer treatment using a fiber-inspired smart scaffold cell culture system. The system recapitulates the actual in vivo tumor microenvironment, thereby ensuring efficacy in clinical trials by identifying drugs that will be effective in treating cancer. The drugs identified by the system may then be used to treat cancers, including breast cancer and colorectal adenocarcinoma. In addition, this screening system provides a platform for methods relating to the personalized treatment of cancer.
    Type: Application
    Filed: February 17, 2017
    Publication date: January 31, 2019
    Inventors: Subhra MOHAPATRA, Shyam S. MOHAPATRA, Rajesh R. NAIR
  • Patent number: 10184942
    Abstract: The invention pertains to biomarkers for clinical detection of malignancies, especially for early detection of cancers. More specifically, this invention pertains to the role of Natriuretic Peptide Receptor A (NPRA) in cancer (e.g., tumor) progression. Thus, the invention includes materials and methods for the detection and prognosis of malignancies. The invention also pertains to methods for treating malignancies.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: January 22, 2019
    Assignee: UNIVERSITY OF SOUTH FLORIDA
    Inventors: Subhra Mohapatra, Shyam Mohapatra
  • Publication number: 20180338996
    Abstract: The present invention concerns a method for treatment of traumatic brain injury (TBI) in a human or non-human animal subject, comprising administering stem or progenitor cells to the subject, such as mesenchymal stromal cells; and administering one or more PPAR? agonists, such as pioglitazone (PG), to the subject before, during, and/or after administration of the stem or progenitor cells. Another aspect of the invention concerns a pharmaceutical composition useful for treating TBI, the composition comprising stem cells or progenitor cells, such as mesenchymal stromal cells, and one or more PPAR? agonists, such as PG.
    Type: Application
    Filed: May 23, 2018
    Publication date: November 29, 2018
    Applicant: UNIVERSITY OF SOUTH FLORIDA
    Inventors: SUBHRA MOHAPATRA, SHYAM S. MOHAPATRA, MAHASWETA DAS
  • Publication number: 20180256579
    Abstract: Disclosed herein are compositions and methods for treating cancer. Further provided herein are compositions and methods for reducing, inhibiting, or preventing resistance of cancer to tyrosine kinase inhibitors. The methods may include administering an anti-resistance agent such as a CYP51A1 inhibitor or an agonist of miRNA-764 (SEQ ID NO: 4) to a subject. A tyrosine kinase inhibitor may also be administered to the subject in addition to the anti-resistance agent.
    Type: Application
    Filed: February 23, 2018
    Publication date: September 13, 2018
    Inventors: Subhra Mohapatra, Shyam S. Mohapatra, Mark Howell, Rajesh Nair
  • Publication number: 20180195037
    Abstract: Provided herein is a three-dimensional scaffold composition comprising randomly oriented fibers, wherein the fibers comprise a polyethylene glycol-polylactic acid block copolymer (PEG-PLA) and a poly(lactic-co-glycolic acid) (PLGA). Also provided are methods for using the three-dimensional scaffolds described herein.
    Type: Application
    Filed: April 18, 2017
    Publication date: July 12, 2018
    Applicant: University of South Florida
    Inventors: Subhra Mohapatra, Shyam S. Mohapatra, Yvonne Kathleen Davis, Chunyan Wang
  • Patent number: 9938526
    Abstract: The compositions and methods of the disclosure particularly target the divalent metal transporter expressed on olfactory nerve terminals to transport divalent cation-coated or cation-containing nanoparticles to all regions of brain. It has been found that such divalent cation-containing nanoparticles, including those nanoparticles comprising manganese have affinity for the metal transport receptor proteins. Although this receptor has particular affinity for manganese, it is contemplated that other divalent ions, including magnesium, calcium, and the like may also be bound to such receptors leading to transport of the nanoparticles into the intracellular cytoplasm. Nanoparticles have been developed, therefore, as vehicles for parenteral delivery of genes, proteins and drugs.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: April 10, 2018
    Assignees: University of South Florida, The United States of America as Represented by the Department of Veterans Affairs Office of General Counsel—PSG IV (024)
    Inventors: Juan Sanchez-Ramos, Vasyl Sava, Shijie Song, Shyam S. Mohapatra, Subhra Mohapatra
  • Publication number: 20180045681
    Abstract: A novel SH-SAW biosensor capable of non-invasive and touch-free detection of cancer cell viability and growth or proliferation in two-dimensional (2D) and three-dimensional (3D) cell cultures as well as stem cell regeneration as it pertains to cancer cell biology and anti-cancer drug development is presented. The biosensor includes two pairs of resonators including interdigital transducers reflecting fingers to quantify mass loading by the cells in suspension as well as within a tumoroid culture platform. The biosensor can be part of a perfused 3PNS-tumoroid system that is amenable to real-time non-invasive monitoring of the cell proliferation, viability, and multiplexed detection of key physiologic and clinical biomarkers.
    Type: Application
    Filed: August 21, 2017
    Publication date: February 15, 2018
    Applicants: University of South Florida, TransGenex Nanobiotech, Inc.
    Inventors: Shyam S. Mohapatra, Subhra Mohapatra, Rasim Oytun Guldiken, Rajesh R. Nair
  • Patent number: 9782494
    Abstract: Provided herein is a method of transfecting a brain cell of a subject with a polynucleotide comprising systemically administering to the subject a composition comprising a micelle having a hydrophobic superparamagnetic iron oxide nanoparticle (SPION) core, a first coating comprising a cationic polymer, and a second coating comprising the polynucleotide, wherein the subject has a mild traumatic brain injury.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: October 10, 2017
    Assignee: University of South Florida
    Inventors: Subhra Mohapatra, Shyam S. Mohapatra, Mahasweta Das, Chunyan Wang
  • Publication number: 20170219564
    Abstract: Provided herein is a three-dimensional scaffold composition comprising randomly oriented fibers, wherein the fibers comprise a polyethylene glycol-polylactic acid block copolymer (PEG-PLA) and a poly(lactic-co-glycolic acid) (PLGA). Also provided are methods for using the three-dimensional scaffolds described herein.
    Type: Application
    Filed: April 18, 2017
    Publication date: August 3, 2017
    Applicant: University of South Florida (A Florida Non-Profit Corporation)
    Inventors: Subhra Mohapatra, Shyam S. Mohapatra