Patents by Inventor Subhra Mohapatra

Subhra Mohapatra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9695262
    Abstract: The present invention concerns molecularly imprinted polymers (MIPs) having an affinity for natriuretic peptides, such as atrial natriuretic peptide (ANP). In some embodiments, the MIP is a nanoparticle (a molecularly imprinted polymeric nanoparticle (MIPNP)). Other aspects of the invention include methods of preparing an MIP having affinity for a natriuretic peptide, methods for binding a natriuretic peptide in vitro or in vivo using an MIP of the invention, methods for interfering with the binding of a natriuretic peptide with its receptor in vivo, methods for reducing inflammation, cell growth, cell differentiation, or a cell proliferation disorder, methods for detecting natriuretic peptides, and devices and kits for sequestering and/or detecting natriuretic peptides.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: July 4, 2017
    Assignee: UNIVERSITY OF SOUTH FLORIDA
    Inventors: Subhra Mohapatra, Chunyan Wang
  • Patent number: 9675714
    Abstract: Disclosed herein are theranostic nanoparticles configured for simultaneous delivery of a diagnostic moiety, drug moiety, and a gene therapy moiety. In one embodiment, the theranostic nanoparticles contain a super paramagnetic iron oxide chemotherapeutic loaded on a chitosan functionalized 2D graphene sheet with a gene therapy moiety attached to the surface of the chitosan functionalized 2D graphene sheet. Also disclosed are methods for making and administering theranositic nanoparticles configured for simultaneous delivery of a diagnostic moiety, drug moiety, and a gene therapy moiety.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: June 13, 2017
    Assignee: University of South Florida
    Inventors: Subhra Mohapatra, Chunyan Wang
  • Publication number: 20170137812
    Abstract: Provided are methods of treating an inflammatory disease in a subject in need thereof by administering an amount of microRNA 142, an amount of microRNA 223 or an amount of microRNA 142 and an amount of micro RNA 223 to the subject in need thereof.
    Type: Application
    Filed: November 14, 2016
    Publication date: May 18, 2017
    Applicant: University of South Florida
    Inventors: Shyam S. Mohapatra, Srinivas Nagaraj Bharadwaj, Subhra Mohapatra
  • Patent number: 9624473
    Abstract: Provided herein is a three-dimensional scaffold composition comprising randomly oriented fibers, wherein the fibers comprise a polyethylene glycol-polylactic acid block copolymer (PEG-PLA) and a poly(lactic-co-glycolic acid) (PLGA). Also provided are methods for using the three-dimensional scaffolds described herein.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: April 18, 2017
    Inventors: Subhra Mohapatra, Shyam S. Mohapatra, Yvonne Kathleen Davis, Chunyan Wang
  • Patent number: 9618501
    Abstract: Provided herein is a three-dimensional scaffold composition comprising randomly oriented fibers, wherein the fibers comprise a polyethylene glycol-polylactic acid block copolymer (PEG-PLA) and a poly(lactic-co-glycolic acid) (PLGA). Also provided are methods for using the three-dimensional scaffolds described herein.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: April 11, 2017
    Assignee: University of South Florida
    Inventors: Subhra Mohapatra, Shyam S. Mohapatra
  • Publication number: 20170058264
    Abstract: Described herein are compositions and methods of forming multi-cellular tumoroids. Also described herein are methods of using the multi-cellular tumoroids.
    Type: Application
    Filed: May 19, 2015
    Publication date: March 2, 2017
    Applicants: University of south Florida, TRANSGENEX THERAPEUTICS, LLC
    Inventors: Subhra Mohapatra, Shyam S. Mohapatra, Mahasweta Das
  • Patent number: 9550992
    Abstract: Provided are methods and compositions for modulating the differentiation of a myeloid derived suppressor cell (MDSC). In particular, described herein are miR-142 polynucleotides and miR-223 polynucleotides that can be used to modulate differentiation of MDSCs. Increased differentiation of a MDSC population, or cells within an MDSC population, can be achieved by increasing the miR-142 and/or miR-223 polynucleotides in a MDSC.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: January 24, 2017
    Assignee: University of South Florida
    Inventors: Shyam S. Mohapatra, Srinivas Nagaraj Bharadwaj, Subhra Mohapatra
  • Publication number: 20160312222
    Abstract: The compositions and methods of the disclosure particularly target the divalent metal transporter expressed on olfactory nerve terminals to transport divalent cation-coated or cation-containing nanoparticles to all regions of brain. It has been found that such divalent cation-containing nanoparticles, including those nanoparticles comprising manganese have affinity for the metal transport receptor proteins. Although this receptor has particular affinity for manganese, it is contemplated that other divalent ions, including magnesium, calcium, and the like may also be bound to such receptors leading to transport of the nanoparticles into the intracellular cytoplasm. Nanoparticles have been developed, therefore, as vehicles for parenteral delivery of genes, proteins and drugs.
    Type: Application
    Filed: May 24, 2016
    Publication date: October 27, 2016
    Applicant: University of South Florida
    Inventors: Juan Sanchez-Ramos, Vasyl Sava, Shijie Song, Shyam S. Mohapatra, Subhra Mohapatra
  • Patent number: 9439978
    Abstract: Provided herein are compositions comprising a micelle having a hydrophobic superparmagnetic iron oxide nanoparticle (SPION) core, a first coating comprising a cationic polymer, and a second coating comprising a polynucleotide. Also provided are methods of using the compositions for transfection and/or transformation of a cell with the polynucleotide. Further provided are methods of detecting transfection of a cell with the polynucleotide.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: September 13, 2016
    Assignees: University of South Florida, The United States of America as represented by National Institutes of Health (NIH), U.S. Dept. of Health and Human Services (DHHS), U.S. Government
    Inventors: Subhra Mohapatra, Chunyan Wang
  • Patent number: 9433682
    Abstract: Provided herein is a hydrogel composition comprising a graphene, a chitosan, and a polyethylene (glycol) diacrylate (PEGDA) (PCG hydrogel). In some embodiments, the hydrogel further comprises a N-isopropylacrylamide (NIPAM) (TPCG hydrogel). Also provided is a method for differentiating a mesenchymal stem cell comprising contacting the cell with the PCG hydrogel. Further provided herein is a method for delivering a pharmaceutical composition to a cell comprising administering to the cell a TPCG hydrogel and the pharmaceutical composition.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: September 6, 2016
    Assignees: University South Florida, National Institutes of Health (NIH), U.S. Dept. of Health and Human Services (DHHS)
    Inventors: Subhra Mohapatra, Chunyan Wang
  • Patent number: 9434926
    Abstract: Provided herein are hydrogel compositions containing graphene, chitosan, a polyethylene (glycol) diacrylate (PEGDA). The hydrogel can optionally contain an N-isopropylacrylamide (NIPAM) (TPCG hydrogel). Also provided are methods for differentiating a cell on the hydrogels described herein. Further provided herein are methods for delivering a compound via the hydrogels described herein.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: September 6, 2016
    Assignee: University of South Florida
    Inventors: Subhra Mohapatra, Chunyan Wang
  • Patent number: 9375400
    Abstract: The compositions and methods of the disclosure particularly target the divalent metal transporter expressed on olfactory nerve terminals to transport divalent cation-coated or cation-containing nanoparticles to all regions of brain. It has been found that such divalent cation-containing nanoparticles, including those nanoparticles comprising manganese have affinity for the metal transport receptor proteins. Although this receptor has particular affinity for manganese, it is contemplated that other divalent ions, including magnesium, calcium, and the like may also be bound to such receptors leading to transport of the nanoparticles into the intracellular cytoplasm. Nanoparticles have been developed, therefore, as vehicles for parenteral delivery of genes, proteins and drugs.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: June 28, 2016
    Assignee: University of South Florida
    Inventors: Juan Sanchez-Ramos, Vasyl Sava, Shijie Song, Shyam S. Mohapatra, Subhra Mohapatra
  • Patent number: 9063142
    Abstract: A treatment for prostate cancer using cyclin-dependent kinase inhibitors (CKIs) and a method of determining patient sensitivity to such CKIs is provided. The effects of cyclin-dependent kinase inhibitors on the survival of prostate cancer cells was examined. Roscovitine, R-roscovitine, and CGP74514A were shown to induce the apoptosis of LNCaP and LNCaP-Rf cells, both of which express wild-type p53. The cyclin-dependent kinase inhibitors of the present invention induce the mitochondria-mediated apoptosis of prostate cancer cells by a dual mechanism: p53 accumulation and XIAP depletion.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: June 23, 2015
    Assignee: University of Florida
    Inventors: Subhra Mohapatra, W. Jack Pledger
  • Publication number: 20150064116
    Abstract: Provided herein are compositions comprising a micelle having a hydrophobic superparmagnetic iron oxide nanoparticle (SPION) core, a first coating comprising a cationic polymer, and a second coating comprising a polynucleotide. Also provided are methods of using the compositions for transfection and/or transformation of a cell with the polynucleotide. Further provided are methods of detecting transfection of a cell with the polynucleotide.
    Type: Application
    Filed: September 28, 2012
    Publication date: March 5, 2015
    Applicant: University of South Florida (A Florida Non-Profit Corporation)
    Inventors: Subhra Mohapatra, Chunyan Wang
  • Publication number: 20150030609
    Abstract: The subject invention identifies CC chemokine ligand 20 (CCL20) as a novel biomarker for diagnosis of traumatic brain injury and/or neurodegeneration in the brain. The subject invention also provides treatment methods for traumatic brain injury and/or neurodegeneration in the brain by modulating systemic and/or brain-specific CCL20-CCR6 signaling. Also provided are uses of CCL20-CCR6 signaling a target for screening for therapeutic agents that are useful for treatment of traumatic brain injury.
    Type: Application
    Filed: May 3, 2012
    Publication date: January 29, 2015
    Applicant: UNIVERSITY OF SOUTH FLORIDA
    Inventors: Subhra Mohapatra, Shyam S. Mohapatra, Keith Ronald Pennypacker, Mahasweta Das, Christopher Charles Leonardo
  • Publication number: 20150024967
    Abstract: Provided herein is a three-dimensional scaffold composition comprising randomly oriented fibers, wherein the fibers comprise a polyethylene glycol-polylactic acid block copolymer (PEG-PLA) and a poly(lactic-co-glycolic acid) (PLGA). Also provided are methods for using the three-dimensional scaffolds described herein.
    Type: Application
    Filed: July 31, 2014
    Publication date: January 22, 2015
    Applicant: University of South Florida (A Florida Non-Profit Corporation)
    Inventors: Subhra Mohapatra, Shyam S. Mohapatra
  • Publication number: 20140343120
    Abstract: Methods, compositions and devices are provided by the present invention for reducing activity of a natriuretic peptide receptor and other signals. Therapeutic treatments are provided by use of polynucleotides encoding a natriuretic peptide or by regulating the expression of natriuretic peptide receptor, such as NPRA and NPRC, or combinations of these therapies. Routes used for delivering polynucleotides encoding a natriuretic peptide, or, for example, siRNA that down regulates natriuretic peptide receptor include subcutaneous injection, oral gavage, transdermal and intranasal delivery routes. Compositions can include chitosan, chitosan derivatives, and chitosan derivative and a lipid. Transdermal delivery can use a transdermal cream. Intranasal delivery can use a dropper or an aspirator for delivery of a mist. Oral gavage delivers equivalent to oral delivery.
    Type: Application
    Filed: December 11, 2013
    Publication date: November 20, 2014
    Applicant: UNIVERSITY OF SOUTH FLORIDA
    Inventors: SHYAM S. MOHAPATRA, WEIDONG XU, XIAOYUAN KONG, XIAOQIN WANG, SUBHRA MOHAPATRA
  • Publication number: 20140336239
    Abstract: Provided are methods and compositions for modulating the differentiation of a myeloid derived suppressor cell (MDSC). In particular, described herein are miR-142 polynucleotides and miR-223 polynucleotides that can be used to modulate differentiation of MDSCs. Increased differentiation of a MDSC population, or cells within an MDSC population, can be achieved by increasing the miR-142 and/or miR-223 polynucleotides in a MDSC.
    Type: Application
    Filed: December 3, 2012
    Publication date: November 13, 2014
    Applicant: University of South Florida (A florida Non-Profit Corporation)
    Inventors: Shyam S. Mohapatra, Srinivas Nagaraj Bharadwaj, Subhra Mohapatra
  • Publication number: 20140248364
    Abstract: The compositions and methods of the disclosure particularly target the divalent metal transporter expressed on olfactory nerve terminals to transport divalent cation-coated or cation-containing nanoparticles to all regions of brain. It has been found that such divalent cation-containing nanoparticles, including those nanoparticles comprising manganese have affinity for the metal transport receptor proteins. Although this receptor has particular affinity for manganese, it is contemplated that other divalent ions, including magnesium, calcium, and the like may also be bound to such receptors leading to transport of the nanoparticles into the intracellular cytoplasm. Nanoparticles have been developed, therefore, as vehicles for parenteral delivery of genes, proteins and drugs.
    Type: Application
    Filed: September 14, 2012
    Publication date: September 4, 2014
    Inventors: Juan Sanchez-Ramos, Vasyl Sava, Shijie Song, Shyam S. Mohapatra, Subhra Mohapatra
  • Patent number: 8716299
    Abstract: A treatment for prostate cancer using cyclin-dependent kinase inhibitors is provided. The effects of cyclin-dependent kinase inhibitors on the survival of prostate cancer cells was examined. Roscovitine, R-roscovitine, and CGP74514A were shown to induce the apoptosis of LNCaP and LNCaP-Rf cells, both of which express wild-type p53. The cyclin-dependent kinase inhibitors of the present invention induce the mitochondria-mediated apoptosis of prostate cancer cells by a dual mechanism: p53 accumulation and XIAP depletion.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: May 6, 2014
    Assignee: University of South Florida
    Inventors: Subhra Mohapatra, W. Jack Pledger